1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
type t = int
external equal : int -> int -> bool = "%eq"
external compare : int -> int -> int = "caml_int_compare"
let hash i = i land 0x3FFFFFFF
module Self =
struct
type t = int
let compare = compare
end
module Set = Set.Make(Self)
module Map =
struct
include CMap.Make(Self)
type 'a map = 'a CMap.Make(Self).t
type 'a _map =
| MEmpty
| MNode of 'a map * int * 'a * 'a map * int
let map_prj : 'a map -> 'a _map = Obj.magic
let rec find i s = match map_prj s with
| MEmpty -> raise Not_found
| MNode (l, k, v, r, h) ->
if i < k then find i l
else if i = k then v
else find i r
let rec get i s = match map_prj s with
| MEmpty -> assert false
| MNode (l, k, v, r, h) ->
if i < k then get i l
else if i = k then v
else get i r
let rec find_opt i s = match map_prj s with
| MEmpty -> None
| MNode (l, k, v, r, h) ->
if i < k then find_opt i l
else if i = k then Some v
else find_opt i r
end
module List = struct
let mem = List.memq
let assoc = List.assq
let mem_assoc = List.mem_assq
let remove_assoc = List.remove_assq
end
let min (i : int) j = if i < j then i else j
(** Utility function *)
let rec next from upto =
if from < upto then next (2 * from + 1) upto
else from
module PArray =
struct
type 'a t = 'a data ref
and 'a data =
| Root of 'a option array
| DSet of int * 'a option * 'a t
let empty n = ref (Root (Array.make n None))
let rec rerootk t k = match !t with
| Root _ -> k ()
| DSet (i, v, t') ->
let next () = match !t' with
| Root a as n ->
let v' = Array.unsafe_get a i in
let () = Array.unsafe_set a i v in
let () = t := n in
let () = t' := DSet (i, v', t) in
k ()
| DSet _ -> assert false
in
rerootk t' next
let reroot t = rerootk t (fun () -> ())
let get t i =
let () = assert (0 <= i) in
match !t with
| Root a ->
if Array.length a <= i then None
else Array.unsafe_get a i
| DSet _ ->
let () = reroot t in
match !t with
| Root a ->
if Array.length a <= i then None
else Array.unsafe_get a i
| DSet _ -> assert false
let set t i v =
let () = assert (0 <= i) in
let () = reroot t in
match !t with
| DSet _ -> assert false
| Root a as n ->
let len = Array.length a in
if i < len then
let old = Array.unsafe_get a i in
if old == v then t
else
let () = Array.unsafe_set a i v in
let res = ref n in
let () = t := DSet (i, old, res) in
res
else match v with
| None -> t (* Nothing to do! *)
| Some _ -> (* we must resize *)
let nlen = next len (succ i) in
let nlen = min nlen Sys.max_array_length in
let () = assert (i < nlen) in
let a' = Array.make nlen None in
let () = Array.blit a 0 a' 0 len in
let () = Array.unsafe_set a' i v in
let res = ref (Root a') in
let () = t := DSet (i, None, res) in
res
end
module PMap =
struct
type key = int
(** Invariants:
1. an empty map is always [Empty].
2. the set of the [Map] constructor remembers the present keys.
*)
type 'a t = Empty | Map of Set.t * 'a PArray.t
let empty = Empty
let is_empty = function
| Empty -> true
| Map _ -> false
let singleton k x =
let len = next 19 (k + 1) in
let len = min Sys.max_array_length len in
let v = PArray.empty len in
let v = PArray.set v k (Some x) in
let s = Set.singleton k in
Map (s, v)
let add k x = function
| Empty -> singleton k x
| Map (s, v) ->
let s = match PArray.get v k with
| None -> Set.add k s
| Some _ -> s
in
let v = PArray.set v k (Some x) in
Map (s, v)
let remove k = function
| Empty -> Empty
| Map (s, v) ->
let s = Set.remove k s in
if Set.is_empty s then Empty
else
let v = PArray.set v k None in
Map (s, v)
let mem k = function
| Empty -> false
| Map (_, v) ->
match PArray.get v k with
| None -> false
| Some _ -> true
let find k = function
| Empty -> raise Not_found
| Map (_, v) ->
match PArray.get v k with
| None -> raise Not_found
| Some x -> x
let iter f = function
| Empty -> ()
| Map (s, v) ->
let iter k = match PArray.get v k with
| None -> ()
| Some x -> f k x
in
Set.iter iter s
let fold f m accu = match m with
| Empty -> accu
| Map (s, v) ->
let fold k accu = match PArray.get v k with
| None -> accu
| Some x -> f k x accu
in
Set.fold fold s accu
let exists f m = match m with
| Empty -> false
| Map (s, v) ->
let exists k = match PArray.get v k with
| None -> false
| Some x -> f k x
in
Set.exists exists s
let for_all f m = match m with
| Empty -> true
| Map (s, v) ->
let for_all k = match PArray.get v k with
| None -> true
| Some x -> f k x
in
Set.for_all for_all s
let cast = function
| Empty -> Map.empty
| Map (s, v) ->
let bind k = match PArray.get v k with
| None -> assert false
| Some x -> x
in
Map.bind bind s
let domain = function
| Empty -> Set.empty
| Map (s, _) -> s
end
|