1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
\documentclass[a4paper]{article}
\usepackage{fullpage}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsfonts}
\parindent=0pt
\parskip=10pt
%%%%%%%%%%%%%
% Macros
\newcommand\itemrule[3]{
\subsubsection{#1}
\begin{quote}
\begin{tt}
#3
\end{tt}
\end{quote}
\begin{quote}
Name: \texttt{#2}
\end{quote}}
\newcommand\formula[1]{\begin{tt}#1\end{tt}}
\newcommand\tactic[1]{\begin{tt}#1\end{tt}}
\newcommand\command[1]{\begin{tt}#1\end{tt}}
\newcommand\term[1]{\begin{tt}#1\end{tt}}
\newcommand\library[1]{\texttt{#1}}
\newcommand\name[1]{\texttt{#1}}
\newcommand\zero{\texttt{zero}}
\newcommand\op{\texttt{op}}
\newcommand\opPrime{\texttt{op'}}
\newcommand\opSecond{\texttt{op''}}
\newcommand\phimapping{\texttt{phi}}
\newcommand\D{\texttt{D}}
\newcommand\elt{\texttt{elt}}
\newcommand\rel{\texttt{rel}}
\newcommand\relp{\texttt{rel'}}
%%%%%%%%%%%%%
\begin{document}
\begin{center}
\begin{huge}
Proposed naming conventions for the Coq standard library
\end{huge}
\end{center}
\bigskip
The following document describes a proposition of canonical naming
schemes for the Coq standard library. Obviously and unfortunately, the
current state of the library is not as homogeneous as it would be if
it would systematically follow such a scheme. To tend in this
direction, we however recommend to follow the following suggestions.
\tableofcontents
\section{General conventions}
\subsection{Variable names}
\begin{itemize}
\item Variables are preferably quantified at the head of the
statement, even if some premisses do not depend of one of them. For
instance, one would state
\begin{quote}
\begin{tt}
{forall x y z:D, x <= y -> x+z <= y+z}
\end{tt}
\end{quote}
and not
\begin{quote}
\begin{tt}
{forall x y:D, x <= y -> forall z:D, x+z <= y+z}
\end{tt}
\end{quote}
\item Variables are preferably quantified (and named) in the order of
``importance'', then of appearance, from left to right, even if
for the purpose of some tactics it would have been more convenient
to have, say, the variables not occurring in the conclusion
first. For instance, one would state
\begin{quote}
\begin{tt}
{forall x y z:D, x+z <= y+z -> x <= y}
\end{tt}
\end{quote}
and not
\begin{quote}
\begin{tt}
{forall z x y:D, x+z <= y+z -> x <= y}
\end{tt}
\end{quote}
nor
\begin{quote}
\begin{tt}
{forall x y z:D, y+x <= z+x -> y <= z}
\end{tt}
\end{quote}
\item Choice of effective names is domain-dependent. For instance, on
natural numbers, the convention is to use the variables $n$, $m$,
$p$, $q$, $r$, $s$ in this order.
On generic domains, the convention is to use the letters $x$, $y$,
$z$, $t$. When more than three variables are needed, indexing variables
It is conventional to use specific names for variables having a
special meaning. For instance, $eps$ or $\epsilon$ can be used to
denote a number intended to be as small as possible. Also, $q$ and
$r$ can be used to denote a quotient and a rest. This is good
practice.
\end{itemize}
\subsection{Disjunctive statements}
A disjunctive statement with a computational content will be suffixed
by \name{\_inf}. For instance, if
\begin{quote}
\begin{tt}
{forall x y, op x y = zero -> x = zero \/ y = zero}
\end{tt}
\end{quote}
has name \texttt{D\_integral}, then
\begin{quote}
\begin{tt}
{forall x y, op x y = zero -> \{x = zero\} + \{y = zero\}}
\end{tt}
\end{quote}
will have name \texttt{D\_integral\_inf}.
As an exception, decidability statements, such as
\begin{quote}
\begin{tt}
{forall x y, \{x = y\} + \{x <> y\}}
\end{tt}
\end{quote}
will have a named ended in \texttt{\_dec}. Idem for cotransitivity
lemmas which are inherently computational that are ended in
\texttt{\_cotrans}.
\subsection{Inductive types constructor names}
As a general rule, constructor names start with the name of the
inductive type being defined as in \texttt{Inductive Z := Z0 : Z |
Zpos : Z -> Z | Zneg : Z -> Z} to the exception of very standard
types like \texttt{bool}, \texttt{nat}, \texttt{list}...
For inductive predicates, constructor names also start with the name
of the notion being defined with one or more suffixes separated with
\texttt{\_} for discriminating the different cases as e.g. in
\begin{verbatim}
Inductive even : nat -> Prop :=
| even_O : even 0
| even_S n : odd n -> even (S n)
with odd : nat -> Prop :=
| odd_S n : even n -> odd (S n).
\end{verbatim}
As a general rule, inductive predicate names should be lowercase (to
the exception of notions referring to a proper name, e.g. \texttt{Bezout})
and multiple words must be separated by ``{\_}''.
As an exception, when extending libraries whose general rule is that
predicates names start with a capital letter, the convention of this
library should be kept and the separation between multiple words is
done by making the initial of each work a capital letter (if one of
these words is a proper name, then a ``{\_}'' is added to emphasize
that the capital letter is proper and not an application of the rule
for marking the change of word).
Inductive predicates that characterize the specification of a function
should be named after the function it specifies followed by
\texttt{\_spec} as in:
\begin{verbatim}
Inductive nth_spec : list A -> nat -> A -> Prop :=
| nth_spec_O a l : nth_spec (a :: l) 0 a
| nth_spec_S n a b l : nth_spec l n a -> nth_spec (b :: l) (S n) a.
\end{verbatim}
\section{Equational properties of operations}
\subsection{General conventions}
If the conclusion is in the other way than listed below, add suffix
\name{\_reverse} to the lemma name.
\subsection{Specific conventions}
\itemrule{Associativity of binary operator {\op} on domain {\D}}{Dop\_assoc}
{forall x y z:D, op x (op y z) = op (op x y) z}
Remark: Symmetric form: \name{Dop\_assoc\_reverse}:
\formula{forall x y z:D, op (op x y) z = op x (op y z)}
\itemrule{Commutativity of binary operator {\op} on domain {\D}}{Dop\_comm}
{forall x y:D, op x y = op y x}
Remark: Avoid \formula{forall x y:D, op y x = op x y}, or at worst, call it
\name{Dop\_comm\_reverse}
\itemrule{Left neutrality of element elt for binary operator {\op}}{Dop\_elt\_l}
{forall x:D, op elt x = x}
Remark: In English, ``{\elt} is an identity for {\op}'' seems to be
a more common terminology.
\itemrule{Right neutrality of element elt for binary operator {\op}}{Dop\_elt\_r}
{forall x:D, op x elt = x}
Remark: By convention, if the identities are reminiscent to zero or one, they
are written 1 and 0 in the name of the property.
\itemrule{Left absorption of element elt for binary operator {\op}}{Dop\_elt\_l}
{forall x:D, op elt x = elt}
Remarks:
\begin{itemize}
\item In French school, this property is named "elt est absorbant pour op"
\item English, the property seems generally named "elt is a zero of op"
\item In the context of lattices, this a boundedness property, it may
be called "elt is a bound on D", or referring to a (possibly
arbitrarily oriented) order "elt is a least element of D" or "elt
is a greatest element of D"
\end{itemize}
\itemrule{Right absorption of element {\elt} for binary operator {\op}}{Dop\_elt\_l [BAD ??]}
{forall x:D, op x elt = elt}
\itemrule{Left distributivity of binary operator {\op} over {\opPrime} on domain {\D}}{Dop\_op'\_distr\_l}
{forall x y z:D, op (op' x y) z = op' (op x z) (op y z)}
Remark: Some authors say ``distribution''.
\itemrule{Right distributivity of binary operator {\op} over {\opPrime} on domain {\D}}{Dop\_op'\_distr\_r}
{forall x y z:D, op z (op' x y) = op' (op z x) (op z y)}
Remark: Note the order of arguments.
\itemrule{Distributivity of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr}
{forall x y:D, op (op' x y) = op' (op x) (op y)}
\itemrule{Distributivity of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr}
{forall x y:D, op (op' x y) = op' (op x) (op y)}
Remark: For a non commutative operation with inversion of arguments, as in
\formula{forall x y z:D, op (op' x y) = op' (op y) (op y z)},
we may probably still call the property distributivity since there
is no ambiguity.
Example: \formula{forall n m : Z, -(n+m) = (-n)+(-m)}.
Example: \formula{forall l l' : list A, rev (l++l') = (rev l)++(rev l')}.
\itemrule{Left extrusion of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr\_l}
{forall x y:D, op (op' x y) = op' (op x) y}
Question: Call it left commutativity ?? left swap ?
\itemrule{Right extrusion of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr\_r}
{forall x y:D, op (op' x y) = op' x (op y)}
\itemrule{Idempotency of binary operator {\op} on domain {\D}}{Dop\_idempotent}
{forall x:D, op x x = x}
\itemrule{Idempotency of unary operator {\op} on domain {\D}}{Dop\_idempotent}
{forall x:D, op (op x) = op x}
Remark: This is actually idempotency of {\op} wrt to composition and
identity.
\itemrule{Idempotency of element elt for binary operator {\op} on domain {\D}}{Dop\_elt\_idempotent}
{op elt elt = elt}
Remark: Generally useless in CIC for concrete, computable operators
Remark: The general definition is ``exists n, iter n op x = x''.
\itemrule{Nilpotency of element elt wrt a ring D with additive neutral
element {\zero} and multiplicative binary operator
{\op}}{Delt\_nilpotent}
{op elt elt = zero}
Remark: We leave the ring structure of D implicit; the general definition is ``exists n, iter n op elt = zero''.
\itemrule{Zero-product property in a ring D with additive neutral
element {\zero} and multiplicative binary operator
{\op}}{D\_integral}
{forall x y, op x y = zero -> x = zero \/ y = zero}
Remark: We leave the ring structure of D implicit; the Coq library
uses either \texttt{\_is\_O} (for \texttt{nat}), \texttt{\_integral}
(for \texttt{Z}, \texttt{Q} and \texttt{R}), \texttt{eq\_mul\_0} (for
\texttt{NZ}).
Remark: The French school says ``integrité''.
\itemrule{Nilpotency of binary operator {\op} wrt to its absorbing element
zero in D}{Dop\_nilpotent} {forall x, op x x = zero}
Remark: Did not find this definition on the web, but it used in
the Coq library (to characterize \name{xor}).
\itemrule{Involutivity of unary op on D}{Dop\_involutive}
{forall x:D, op (op x) = x}
\itemrule{Absorption law on the left for binary operator {\op} over binary operator {\op}' on the left}{Dop\_op'\_absorption\_l\_l}
{forall x y:D, op x (op' x y) = x}
\itemrule{Absorption law on the left for binary operator {\op} over binary operator {\op}' on the right}{Dop\_op'\_absorption\_l\_r}
{forall x y:D, op x (op' y x) = x}
Remark: Similarly for \name{Dop\_op'\_absorption\_r\_l} and \name{Dop\_op'\_absorption\_r\_r}.
\itemrule{De Morgan law's for binary operators {\opPrime} and {\opSecond} wrt
to unary op on domain {\D}}{Dop'\_op''\_de\_morgan,
Dop''\_op'\_de\_morgan ?? \mbox{leaving the complementing operation
implicit})}
{forall x y:D, op (op' x y) = op'' (op x) (op y)\\
forall x y:D, op (op'' x y) = op' (op x) (op y)}
\itemrule{Left complementation of binary operator {\op} by means of unary {\opPrime} wrt neutral element {\elt} of {\op} on domain {\D}}{Dop\_op'\_opp\_l}
{forall x:D, op (op' x) x = elt}
Remark: If the name of the opposite function is reminiscent of the
notion of complement (e.g. if it is called \texttt{opp}), one can
simply say {Dop\_opp\_l}.
\itemrule{Right complementation of binary operator {\op} by means of unary {\op'} wrt neutral element {\elt} of {\op} on domain {\D}}{Dop\_opp\_r}
{forall x:D, op x (op' x) = elt}
Example: \formula{Radd\_opp\_l: forall r : R, - r + r = 0}
\itemrule{Associativity of binary operators {\op} and {\op'}}{Dop\_op'\_assoc}
{forall x y z, op x (op' y z) = op (op' x y) z}
Example: \formula{forall x y z, x + (y - z) = (x + y) - z}
\itemrule{Right extrusion of binary operator {\opPrime} over binary operator {\op}}{Dop\_op'\_extrusion\_r}
{forall x y z, op x (op' y z) = op' (op x y) z}
Remark: This requires {\op} and {\opPrime} to have their right and left
argument respectively and their return types identical.
Example: \formula{forall x y z, x + (y - z) = (x + y) - z}
Remark: Other less natural combinations are possible, such
as \formula{forall x y z, op x (op' y z) = op' y (op x z)}.
\itemrule{Left extrusion of binary operator {\opPrime} over binary operator {\op}}{Dop\_op'\_extrusion\_l}
{forall x y z, op (op' x y) z = op' x (op y z)}
Remark: Operations are not necessarily internal composition laws. It
is only required that {\op} and {\opPrime} have their right and left
argument respectively and their return type identical.
Remark: When the type are heterogeneous, only one extrusion law is possible and it can simply be named {Dop\_op'\_extrusion}.
Example: \formula{app\_cons\_extrusion : forall a l l', (a :: l) ++ l' = a :: (l ++ l')}.
%======================================================================
%\section{Properties of elements}
%Remark: Not used in current library
%======================================================================
\section{Preservation and compatibility properties of operations}
\subsection{With respect to equality}
\itemrule{Injectivity of unary operator {\op}}{Dop\_inj}
{forall x y:D, op x = op y -> x = y}
\itemrule{Left regularity of binary operator {\op}}{Dop\_reg\_l, Dop\_inj\_l, or Dop\_cancel\_l}
{forall x y z:D, op z x = op z y -> x = y}
Remark: Note the order of arguments.
Remark: The Coq usage is to called it regularity but the English
standard seems to be cancellation. The recommended form is not
decided yet.
Remark: Shall a property like $n^p \leq n^q \rightarrow p \leq q$
(for $n\geq 1$) be called cancellation or should it be reserved for
operators that have an inverse?
\itemrule{Right regularity of binary operator {\op}}{Dop\_reg\_r, Dop\_inj\_r, Dop\_cancel\_r}
{forall x y z:D, op x z = op y z -> x = y}
\subsection{With respect to a relation {\rel}}
\itemrule{Compatibility of unary operator {\op}}{Dop\_rel\_compat}
{forall x y:D, rel x y -> rel (op x) (op y)}
\itemrule{Left compatibility of binary operator {\op}}{Dop\_rel\_compat\_l}
{forall x y z:D, rel x y -> rel (op z x) (op z y)}
\itemrule{Right compatibility of binary operator {\op}}{Dop\_rel\_compat\_r}
{forall x y z:D, rel x y -> rel (op x z) (op y z)}
Remark: For equality, use names of the form \name{Dop\_eq\_compat\_l} or
\name{Dop\_eq\_compat\_r}
(\formula{forall x y z:D, y = x -> op y z = op x z} and
\formula{forall x y z:D, y = x -> op y z = op x z})
Remark: Should we admit (or even prefer) the name
\name{Dop\_rel\_monotone}, \name{Dop\_rel\_monotone\_l},
\name{Dop\_rel\_monotone\_r} when {\rel} is an order ?
\itemrule{Left regularity of binary operator {\op}}{Dop\_rel\_reg\_l}
{forall x y z:D, rel (op z x) (op z y) -> rel x y}
\itemrule{Right regularity of binary operator {\op}}{Dop\_rel\_reg\_r}
{forall x y z:D, rel (op x z) (op y z) -> rel x y}
Question: Would it be better to have \name{z} as first argument, since it
is missing in the conclusion ?? (or admit we shall use the options
``\texttt{with p}''?)
\itemrule{Left distributivity of binary operator {\op} over {\opPrime} along relation {\rel} on domain {\D}}{Dop\_op'\_rel\_distr\_l}
{forall x y z:D, rel (op (op' x y) z) (op' (op x z) (op y z))}
Example: standard property of (not necessarily distributive) lattices
Remark: In a (non distributive) lattice, by swapping join and meet,
one would like also,
\formula{forall x y z:D, rel (op' (op x z) (op y z)) (op (op' x y) z)}.
How to name it with a symmetric name (use
\name{Dop\_op'\_rel\_distr\_mon\_l} and
\name{Dop\_op'\_rel\_distr\_anti\_l})?
\itemrule{Commutativity of binary operator {\op} along (equivalence) relation {\rel} on domain {\D}}{Dop\_op'\_rel\_comm}
{forall x y z:D, rel (op x y) (op y x)}
Example:
\formula{forall l l':list A, Permutation (l++l') (l'++l)}
\itemrule{Irreducibility of binary operator {\op} on domain {\D}}{Dop\_irreducible}
{forall x y z:D, z = op x y -> z = x $\backslash/$ z = y}
Question: What about the constructive version ? Call it \name{Dop\_irreducible\_inf} ?
\formula{forall x y z:D, z = op x y -> \{z = x\} + \{z = y\}}
\itemrule{Primality of binary operator {\op} along relation {\rel} on domain {\D}}{Dop\_rel\_prime}
{forall x y z:D, rel z (op x y) -> rel z x $\backslash/$ rel z y}
%======================================================================
\section{Morphisms}
\itemrule{Morphism between structures {\D} and {\D'}}{\name{D'\_of\_D}}{D -> D'}
Remark: If the domains are one-letter long, one can used \texttt{IDD'} as for
\name{INR} or \name{INZ}.
\itemrule{Morphism {\phimapping} mapping unary operators {\op} to {\op'}}{phi\_op\_op', phi\_op\_op'\_morphism}
{forall x:D, phi (op x) = op' (phi x)}
Remark: If the operators have the same name in both domains, one use
\texttt{D'\_of\_D\_op} or \texttt{IDD'\_op}.
Example: \formula{Z\_of\_nat\_mult: forall n m : nat, Z\_of\_nat (n * m) = (Z\_of\_nat n * Z\_of\_nat m)\%Z}.
Remark: If the operators have different names on distinct domains, one
can use \texttt{op\_op'}.
\itemrule{Morphism {\phimapping} mapping binary operators {\op} to
{\op'}}{phi\_op\_op', phi\_op\_op'\_morphism} {forall
x y:D, phi (op x y) = op' (phi x) (phi y)}
Remark: If the operators have the same name in both domains, one use
\texttt{D'\_of\_D\_op} or \texttt{IDD'\_op}.
Remark: If the operators have different names on distinct domains, one
can use \texttt{op\_op'}.
\itemrule{Morphism {\phimapping} mapping binary operator {\op} to
binary relation {\rel}}{phi\_op\_rel, phi\_op\_rel\_morphism}
{forall x y:D, phi (op x y) <-> rel (phi x) (phi y)}
Remark: If the operator and the relation have similar name, one uses
\texttt{phi\_op}.
Question: How to name each direction? (add \_elim for -> and \_intro
for <- ?? -- as done in Bool.v ??)
Example: \formula{eq\_true\_neg: \~{} eq\_true b <-> eq\_true (negb b)}.
%======================================================================
\section{Preservation and compatibility properties of operations wrt order}
\itemrule{Compatibility of binary operator {\op} wrt (strict order) {\rel} and (large order) {\rel'}}{Dop\_rel\_rel'\_compat}
{forall x y z t:D, rel x y -> rel' z t -> rel (op x z) (op y t)}
\itemrule{Compatibility of binary operator {\op} wrt (large order) {\relp} and (strict order) {\rel}}{Dop\_rel'\_rel\_compat}
{forall x y z t:D, rel' x y -> rel z t -> rel (op x z) (op y t)}
%======================================================================
\section{Properties of relations}
\itemrule{Reflexivity of relation {\rel} on domain {\D}}{Drel\_refl}
{forall x:D, rel x x}
\itemrule{Symmetry of relation {\rel} on domain {\D}}{Drel\_sym}
{forall x y:D, rel x y -> rel y x}
\itemrule{Transitivity of relation {\rel} on domain {\D}}{Drel\_trans}
{forall x y z:D, rel x y -> rel y z -> rel x z}
\itemrule{Antisymmetry of relation {\rel} on domain {\D}}{Drel\_antisym}
{forall x y:D, rel x y -> rel y x -> x = y}
\itemrule{Irreflexivity of relation {\rel} on domain {\D}}{Drel\_irrefl}
{forall x:D, \~{} rel x x}
\itemrule{Asymmetry of relation {\rel} on domain {\D}}{Drel\_asym}
{forall x y:D, rel x y -> \~{} rel y x}
\itemrule{Cotransitivity of relation {\rel} on domain {\D}}{Drel\_cotrans}
{forall x y z:D, rel x y -> \{rel z y\} + \{rel x z\}}
\itemrule{Linearity of relation {\rel} on domain {\D}}{Drel\_trichotomy}
{forall x y:D, \{rel x y\} + \{x = y\} + \{rel y x\}}
Questions: Or call it \name{Drel\_total}, or \name{Drel\_linear}, or
\name{Drel\_connected}? Use
$\backslash/$ ? or use a ternary sumbool, or a ternary disjunction,
for nicer elimination.
\itemrule{Informative decidability of relation {\rel} on domain {\D}}{Drel\_dec (or Drel\_dect, Drel\_dec\_inf ?)}
{forall x y:D, \{rel x y\} + \{\~{} rel x y\}}
Remark: If equality: \name{D\_eq\_dec} or \name{D\_dec} (not like
\name{eq\_nat\_dec})
\itemrule{Non informative decidability of relation {\rel} on domain {\D}}{Drel\_dec\_prop (or Drel\_dec)}
{forall x y:D, rel x y $\backslash/$ \~{} rel x y}
\itemrule{Inclusion of relation {\rel} in relation {\rel}' on domain {\D}}{Drel\_rel'\_incl (or Drel\_incl\_rel')}
{forall x y:D, rel x y -> rel' x y}
Remark: Use \name{Drel\_rel'\_weak} for a strict inclusion ??
%======================================================================
\section{Relations between properties}
\itemrule{Equivalence of properties \texttt{P} and \texttt{Q}}{P\_Q\_iff}
{forall x1 .. xn, P <-> Q}
Remark: Alternatively use \name{P\_iff\_Q} if it is too difficult to
recover what pertains to \texttt{P} and what pertains to \texttt{Q}
in their concatenation (as e.g. in
\texttt{Godel\_Dummett\_iff\_right\_distr\_implication\_over\_disjunction}).
%======================================================================
\section{Arithmetical conventions}
\begin{minipage}{6in}
\renewcommand{\thefootnote}{\thempfootnote} % For footnotes...
\begin{tabular}{lll}
Zero on domain {\D} & D0 & (notation \verb=0=)\\
One on domain {\D} & D1 (if explicitly defined) & (notation \verb=1=)\\
Successor on domain {\D} & Dsucc\\
Predecessor on domain {\D} & Dpred\\
Addition on domain {\D} & Dadd/Dplus\footnote{Coq historically uses \texttt{plus} and \texttt{mult} for addition and multiplication which are inconsistent notations, the recommendation is to use \texttt{add} and \texttt{mul} except in existing libraries that already use \texttt{plus} and \texttt{mult}}
& (infix notation \verb=+= [50,L])\\
Multiplication on domain {\D} & Dmul/Dmult\footnotemark[\value{footnote}] & (infix notation \verb=*= [40,L]))\\
Subtraction on domain {\D} & Dminus & (infix notation \verb=-= [50,L])\\
Opposite on domain {\D} & Dopp (if any) & (prefix notation \verb=-= [35,R]))\\
Inverse on domain {\D} & Dinv (if any) & (prefix notation \verb=/= [35,R]))\\
Power on domain {\D} & Dpower & (infix notation \verb=^= [30,R])\\
Minimal element on domain {\D} & Dmin\\
Maximal element on domain {\D} & Dmax\\
Large less than order on {\D} & Dle & (infix notations \verb!<=! and \verb!>=! [70,N]))\\
Strict less than order on {\D} & Dlt & (infix notations \verb=<= and \verb=>= [70,N]))\\
\end{tabular}
\bigskip
\end{minipage}
\bigskip
The status of \verb!>=! and \verb!>! is undecided yet. It will eithet
be accepted only as parsing notations or may also accepted as a {\em
definition} for the \verb!<=! and \verb!<! (like in \texttt{nat}) or
even as a different definition (like it is the case in \texttt{Z}).
\bigskip
Exception: Peano Arithmetic which is used for pedagogical purpose:
\begin{itemize}
\item domain name is implicit
\item \term{0} (digit $0$) is \term{O} (the 15th letter of the alphabet)
\item \term{succ} is \verb!S! (but \term{succ} can be used in theorems)
\end{itemize}
\end{document}
|