1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CSig
open Names
open Constr
open Environ
type t = Evd.econstr
(** Type of incomplete terms. Essentially a wrapper around {!Constr.t} ensuring
that {!Constr.kind} does not observe defined evars. *)
type types = t
type constr = t
type existential = t pexistential
type case_return = t pcase_return
type case_branch = t pcase_branch
type fixpoint = (t, t) pfixpoint
type cofixpoint = (t, t) pcofixpoint
type unsafe_judgment = (constr, types) Environ.punsafe_judgment
type unsafe_type_judgment = types Environ.punsafe_type_judgment
type named_declaration = (constr, types) Context.Named.Declaration.pt
type rel_declaration = (constr, types) Context.Rel.Declaration.pt
type named_context = (constr, types) Context.Named.pt
type rel_context = (constr, types) Context.Rel.pt
(** {5 Universe variables} *)
module ESorts :
sig
type t
(** Type of sorts up-to universe unification. Essentially a wrapper around
Sorts.t so that normalization is ensured statically. *)
val make : Sorts.t -> t
(** Turn a sort into an up-to sort. *)
val kind : Evd.evar_map -> t -> Sorts.t
(** Returns the view into the current sort. Note that the kind of a variable
may change if the unification state of the evar map changes. *)
end
module EInstance :
sig
type t
(** Type of universe instances up-to universe unification. Similar to
{ESorts.t} for {Univ.Instance.t}. *)
val make : Univ.Instance.t -> t
val kind : Evd.evar_map -> t -> Univ.Instance.t
val empty : t
val is_empty : t -> bool
end
type case_invert = t pcase_invert
type case = (t, t, EInstance.t) pcase
type 'a puniverses = 'a * EInstance.t
(** {5 Destructors} *)
val kind : Evd.evar_map -> t -> (t, t, ESorts.t, EInstance.t) Constr.kind_of_term
(** Same as {!Constr.kind} except that it expands evars and normalizes
universes on the fly. *)
val kind_upto : Evd.evar_map -> Constr.t -> (Constr.t, Constr.t, Sorts.t, Univ.Instance.t) Constr.kind_of_term
val to_constr : ?abort_on_undefined_evars:bool -> Evd.evar_map -> t -> Constr.t
(** Returns the evar-normal form of the argument. Note that this
function is supposed to be called when the original term has not
more free-evars anymore. If you need compatibility with the old
semantics, set [abort_on_undefined_evars] to [false].
For getting the evar-normal form of a term with evars see
{!Evarutil.nf_evar}. *)
val to_constr_opt : Evd.evar_map -> t -> Constr.t option
(** Same as [to_constr], but returns [None] if some unresolved evars remain *)
type kind_of_type =
| SortType of ESorts.t
| CastType of types * t
| ProdType of Name.t Context.binder_annot * t * t
| LetInType of Name.t Context.binder_annot * t * t * t
| AtomicType of t * t array
val kind_of_type : Evd.evar_map -> t -> kind_of_type
(** {5 Constructors} *)
val of_kind : (t, t, ESorts.t, EInstance.t) Constr.kind_of_term -> t
(** Construct a term from a view. *)
val of_constr : Constr.t -> t
(** Translate a kernel term into an incomplete term in O(1). *)
(** {5 Insensitive primitives}
Evar-insensitive versions of the corresponding functions. See the {!Constr}
module for more information.
*)
(** {6 Constructors} *)
val mkRel : int -> t
val mkVar : Id.t -> t
val mkMeta : metavariable -> t
val mkEvar : t pexistential -> t
val mkSort : Sorts.t -> t
val mkSProp : t
val mkProp : t
val mkSet : t
val mkType : Univ.Universe.t -> t
val mkCast : t * cast_kind * t -> t
val mkProd : Name.t Context.binder_annot * t * t -> t
val mkLambda : Name.t Context.binder_annot * t * t -> t
val mkLetIn : Name.t Context.binder_annot * t * t * t -> t
val mkApp : t * t array -> t
val mkConst : Constant.t -> t
val mkConstU : Constant.t * EInstance.t -> t
val mkProj : (Projection.t * t) -> t
val mkInd : inductive -> t
val mkIndU : inductive * EInstance.t -> t
val mkConstruct : constructor -> t
val mkConstructU : constructor * EInstance.t -> t
val mkConstructUi : (inductive * EInstance.t) * int -> t
val mkCase : case -> t
val mkFix : (t, t) pfixpoint -> t
val mkCoFix : (t, t) pcofixpoint -> t
val mkArrow : t -> Sorts.relevance -> t -> t
val mkArrowR : t -> t -> t
val mkInt : Uint63.t -> t
val mkFloat : Float64.t -> t
val mkArray : EInstance.t * t array * t * t -> t
val mkRef : GlobRef.t * EInstance.t -> t
val type1 : t
val applist : t * t list -> t
val applistc : t -> t list -> t
val mkProd_or_LetIn : rel_declaration -> t -> t
val mkLambda_or_LetIn : rel_declaration -> t -> t
val it_mkProd_or_LetIn : t -> rel_context -> t
val it_mkLambda_or_LetIn : t -> rel_context -> t
val mkNamedLambda : Id.t Context.binder_annot -> types -> constr -> constr
val mkNamedLetIn : Id.t Context.binder_annot -> constr -> types -> constr -> constr
val mkNamedProd : Id.t Context.binder_annot -> types -> types -> types
val mkNamedLambda_or_LetIn : named_declaration -> types -> types
val mkNamedProd_or_LetIn : named_declaration -> types -> types
(** {6 Simple case analysis} *)
val isRel : Evd.evar_map -> t -> bool
val isVar : Evd.evar_map -> t -> bool
val isInd : Evd.evar_map -> t -> bool
val isRef : Evd.evar_map -> t -> bool
val isEvar : Evd.evar_map -> t -> bool
val isMeta : Evd.evar_map -> t -> bool
val isSort : Evd.evar_map -> t -> bool
val isCast : Evd.evar_map -> t -> bool
val isApp : Evd.evar_map -> t -> bool
val isLambda : Evd.evar_map -> t -> bool
val isLetIn : Evd.evar_map -> t -> bool
val isProd : Evd.evar_map -> t -> bool
val isConst : Evd.evar_map -> t -> bool
val isConstruct : Evd.evar_map -> t -> bool
val isFix : Evd.evar_map -> t -> bool
val isCoFix : Evd.evar_map -> t -> bool
val isCase : Evd.evar_map -> t -> bool
val isProj : Evd.evar_map -> t -> bool
val isType : Evd.evar_map -> constr -> bool
type arity = rel_context * ESorts.t
val destArity : Evd.evar_map -> types -> arity
val isArity : Evd.evar_map -> t -> bool
val isVarId : Evd.evar_map -> Id.t -> t -> bool
val isRelN : Evd.evar_map -> int -> t -> bool
val isRefX : Evd.evar_map -> GlobRef.t -> t -> bool
val destRel : Evd.evar_map -> t -> int
val destMeta : Evd.evar_map -> t -> metavariable
val destVar : Evd.evar_map -> t -> Id.t
val destSort : Evd.evar_map -> t -> ESorts.t
val destCast : Evd.evar_map -> t -> t * cast_kind * t
val destProd : Evd.evar_map -> t -> Name.t Context.binder_annot * types * types
val destLambda : Evd.evar_map -> t -> Name.t Context.binder_annot * types * t
val destLetIn : Evd.evar_map -> t -> Name.t Context.binder_annot * t * types * t
val destApp : Evd.evar_map -> t -> t * t array
val destConst : Evd.evar_map -> t -> Constant.t * EInstance.t
val destEvar : Evd.evar_map -> t -> t pexistential
val destInd : Evd.evar_map -> t -> inductive * EInstance.t
val destConstruct : Evd.evar_map -> t -> constructor * EInstance.t
val destCase : Evd.evar_map -> t -> case
val destProj : Evd.evar_map -> t -> Projection.t * t
val destFix : Evd.evar_map -> t -> (t, t) pfixpoint
val destCoFix : Evd.evar_map -> t -> (t, t) pcofixpoint
val destRef : Evd.evar_map -> t -> GlobRef.t * EInstance.t
val decompose_app : Evd.evar_map -> t -> t * t list
(** Pops lambda abstractions until there are no more, skipping casts. *)
val decompose_lam : Evd.evar_map -> t -> (Name.t Context.binder_annot * t) list * t
(** Pops lambda abstractions and letins until there are no more, skipping casts. *)
val decompose_lam_assum : Evd.evar_map -> t -> rel_context * t
(** Pops [n] lambda abstractions, and pop letins only if needed to
expose enough lambdas, skipping casts.
@raise UserError if the term doesn't have enough lambdas. *)
val decompose_lam_n_assum : Evd.evar_map -> int -> t -> rel_context * t
(** Pops [n] lambda abstractions and letins, skipping casts.
@raise UserError if the term doesn't have enough lambdas/letins. *)
val decompose_lam_n_decls : Evd.evar_map -> int -> t -> rel_context * t
val compose_lam : (Name.t Context.binder_annot * t) list -> t -> t
val to_lambda : Evd.evar_map -> int -> t -> t
val decompose_prod : Evd.evar_map -> t -> (Name.t Context.binder_annot * t) list * t
val decompose_prod_assum : Evd.evar_map -> t -> rel_context * t
val decompose_prod_n_assum : Evd.evar_map -> int -> t -> rel_context * t
val existential_type : Evd.evar_map -> existential -> types
val whd_evar : Evd.evar_map -> constr -> constr
(** {6 Equality} *)
val eq_constr : Evd.evar_map -> t -> t -> bool
val eq_constr_nounivs : Evd.evar_map -> t -> t -> bool
val eq_constr_universes : Environ.env -> Evd.evar_map -> ?nargs:int -> t -> t -> UnivProblem.Set.t option
val leq_constr_universes : Environ.env -> Evd.evar_map -> ?nargs:int -> t -> t -> UnivProblem.Set.t option
(** [eq_constr_universes_proj] can equate projections and their eta-expanded constant form. *)
val eq_constr_universes_proj : Environ.env -> Evd.evar_map -> t -> t -> UnivProblem.Set.t option
val compare_constr : Evd.evar_map -> (t -> t -> bool) -> t -> t -> bool
(** {6 Iterators} *)
val map : Evd.evar_map -> (t -> t) -> t -> t
val map_with_binders : Evd.evar_map -> ('a -> 'a) -> ('a -> t -> t) -> 'a -> t -> t
val map_branches : (t -> t) -> case_branch array -> case_branch array
val map_return_predicate : (t -> t) -> case_return -> case_return
val iter : Evd.evar_map -> (t -> unit) -> t -> unit
val iter_with_binders : Evd.evar_map -> ('a -> 'a) -> ('a -> t -> unit) -> 'a -> t -> unit
val iter_with_full_binders : Environ.env -> Evd.evar_map -> (rel_declaration -> 'a -> 'a) -> ('a -> t -> unit) -> 'a -> t -> unit
val fold : Evd.evar_map -> ('a -> t -> 'a) -> 'a -> t -> 'a
val fold_with_binders : Evd.evar_map -> ('a -> 'a) -> ('a -> 'b -> t -> 'b) -> 'a -> 'b -> t -> 'b
(** Gather the universes transitively used in the term, including in the
type of evars appearing in it. *)
val universes_of_constr : Evd.evar_map -> t -> Univ.Level.Set.t
(** {6 Substitutions} *)
module Vars :
sig
(** See vars.mli for the documentation of the functions below *)
type instance = t array
type instance_list = t list
type substl = t list
val lift : int -> t -> t
val liftn : int -> int -> t -> t
val substnl : substl -> int -> t -> t
val substl : substl -> t -> t
val subst1 : t -> t -> t
val substnl_decl : substl -> int -> rel_declaration -> rel_declaration
val substl_decl : substl -> rel_declaration -> rel_declaration
val subst1_decl : t -> rel_declaration -> rel_declaration
val replace_vars : (Id.t * t) list -> t -> t
val substn_vars : int -> Id.t list -> t -> t
val subst_vars : Id.t list -> t -> t
val subst_var : Id.t -> t -> t
val noccurn : Evd.evar_map -> int -> t -> bool
val noccur_between : Evd.evar_map -> int -> int -> t -> bool
val closedn : Evd.evar_map -> int -> t -> bool
val closed0 : Evd.evar_map -> t -> bool
val subst_univs_level_constr : Univ.universe_level_subst -> t -> t
val subst_instance_context : Univ.Instance.t -> rel_context -> rel_context
val subst_instance_constr : Univ.Instance.t -> t -> t
val subst_of_rel_context_instance : rel_context -> instance -> substl
val subst_of_rel_context_instance_list : rel_context -> instance_list -> substl
val liftn_rel_context : int -> int -> rel_context -> rel_context
val lift_rel_context : int -> rel_context -> rel_context
val substnl_rel_context : substl -> int -> rel_context -> rel_context
val substl_rel_context : substl -> rel_context -> rel_context
val smash_rel_context : rel_context -> rel_context
val esubst : (int -> 'a -> t) -> 'a Esubst.subs -> t -> t
type substituend
val make_substituend : t -> substituend
val lift_substituend : int -> substituend -> t
end
(** {5 Environment handling} *)
val push_rel : rel_declaration -> env -> env
val push_rel_context : rel_context -> env -> env
val push_rec_types : (t, t) Constr.prec_declaration -> env -> env
val push_named : named_declaration -> env -> env
val push_named_context : named_context -> env -> env
val push_named_context_val : named_declaration -> named_context_val -> named_context_val
val rel_context : env -> rel_context
val named_context : env -> named_context
val val_of_named_context : named_context -> named_context_val
val named_context_of_val : named_context_val -> named_context
val lookup_rel : int -> env -> rel_declaration
val lookup_named : variable -> env -> named_declaration
val lookup_named_val : variable -> named_context_val -> named_declaration
val map_rel_context_in_env :
(env -> constr -> constr) -> env -> rel_context -> rel_context
val match_named_context_val :
named_context_val -> (named_declaration * lazy_val * named_context_val) option
val identity_subst_val : named_context_val -> t list
(* XXX Missing Sigma proxy *)
val fresh_global :
?loc:Loc.t -> ?rigid:Evd.rigid -> ?names:Univ.Instance.t -> Environ.env ->
Evd.evar_map -> GlobRef.t -> Evd.evar_map * t
val is_global : Evd.evar_map -> GlobRef.t -> t -> bool
[@@ocaml.deprecated "Use [EConstr.isRefX] instead."]
val expand_case : Environ.env -> Evd.evar_map ->
case -> (case_info * t * case_invert * t * t array)
val annotate_case : Environ.env -> Evd.evar_map -> case ->
case_info * EInstance.t * t array * (rel_context * t) * case_invert * t * (rel_context * t) array
(** Same as above, but doesn't turn contexts into binders *)
val expand_branch : Environ.env -> Evd.evar_map ->
EInstance.t -> t array -> constructor -> case_branch -> rel_context
(** Given a universe instance and parameters for the inductive type,
constructs the typed context in which the branch lives. *)
val contract_case : Environ.env -> Evd.evar_map ->
(case_info * t * case_invert * t * t array) -> case
(** {5 Extra} *)
val of_existential : Constr.existential -> existential
val of_named_decl : (Constr.t, Constr.types) Context.Named.Declaration.pt -> (t, types) Context.Named.Declaration.pt
val of_rel_decl : (Constr.t, Constr.types) Context.Rel.Declaration.pt -> (t, types) Context.Rel.Declaration.pt
val to_rel_decl : Evd.evar_map -> (t, types) Context.Rel.Declaration.pt -> (Constr.t, Constr.types) Context.Rel.Declaration.pt
val of_named_context : Constr.named_context -> named_context
val of_rel_context : Constr.rel_context -> rel_context
val of_case_invert : Constr.case_invert -> case_invert
val of_constr_array : Constr.t array -> t array
(** {5 Unsafe operations} *)
module Unsafe :
sig
val to_constr : t -> Constr.t
(** Physical identity. Does not care for defined evars. *)
val to_constr_array : t array -> Constr.t array
(** Physical identity. Does not care for defined evars. *)
val to_rel_decl : (t, types) Context.Rel.Declaration.pt -> (Constr.t, Constr.types) Context.Rel.Declaration.pt
(** Physical identity. Does not care for defined evars. *)
val to_named_decl : (t, types) Context.Named.Declaration.pt -> (Constr.t, Constr.types) Context.Named.Declaration.pt
(** Physical identity. Does not care for defined evars. *)
val to_named_context : (t, types) Context.Named.pt -> Constr.named_context
val to_rel_context : (t, types) Context.Rel.pt -> Constr.rel_context
val to_sorts : ESorts.t -> Sorts.t
(** Physical identity. Does not care for normalization. *)
val to_instance : EInstance.t -> Univ.Instance.t
(** Physical identity. Does not care for normalization. *)
val to_case_invert : case_invert -> Constr.case_invert
val eq : (t, Constr.t) eq
(** Use for transparent cast between types. *)
end
|