1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** The modules defined below represent a {e local context}
as defined by Chapter 4 in the Reference Manual:
A {e local context} is an ordered list of of {e local declarations}
of names that we call {e variables}.
A {e local declaration} of some variable can be either:
- a {e local assumption}, or
- a {e local definition}.
{e Local assumptions} are denoted in the Reference Manual as [(name : typ)] and
{e local definitions} are there denoted as [(name := value : typ)].
*)
open Names
type 'a binder_annot = { binder_name : 'a; binder_relevance : Sorts.relevance }
val eq_annot : ('a -> 'a -> bool) -> 'a binder_annot -> 'a binder_annot -> bool
val hash_annot : ('a -> int) -> 'a binder_annot -> int
val map_annot : ('a -> 'b) -> 'a binder_annot -> 'b binder_annot
val make_annot : 'a -> Sorts.relevance -> 'a binder_annot
val binder_name : 'a binder_annot -> 'a
val binder_relevance : 'a binder_annot -> Sorts.relevance
val annotR : 'a -> 'a binder_annot
(** Always Relevant *)
val nameR : Id.t -> Name.t binder_annot
(** Relevant + Name *)
val anonR : Name.t binder_annot
(** Relevant + Anonymous *)
(** Representation of contexts that can capture anonymous as well as non-anonymous variables.
Individual declarations are then designated by de Bruijn indexes. *)
module Rel :
sig
module Declaration :
sig
(* local declaration *)
type ('constr, 'types) pt =
| LocalAssum of Name.t binder_annot * 'types (** name, type *)
| LocalDef of Name.t binder_annot * 'constr * 'types (** name, value, type *)
val get_annot : _ pt -> Name.t binder_annot
(** Return the name bound by a given declaration. *)
val get_name : ('c, 't) pt -> Name.t
(** Return [Some value] for local-declarations and [None] for local-assumptions. *)
val get_value : ('c, 't) pt -> 'c option
(** Return the type of the name bound by a given declaration. *)
val get_type : ('c, 't) pt -> 't
val get_relevance : ('c, 't) pt -> Sorts.relevance
(** Set the name that is bound by a given declaration. *)
val set_name : Name.t -> ('c, 't) pt -> ('c, 't) pt
(** Set the type of the bound variable in a given declaration. *)
val set_type : 't -> ('c, 't) pt -> ('c, 't) pt
(** Return [true] iff a given declaration is a local assumption. *)
val is_local_assum : ('c, 't) pt -> bool
(** Return [true] iff a given declaration is a local definition. *)
val is_local_def : ('c, 't) pt -> bool
(** Check whether any term in a given declaration satisfies a given predicate. *)
val exists : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether all terms in a given declaration satisfy a given predicate. *)
val for_all : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether the two given declarations are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Map the name bound by a given declaration. *)
val map_name : (Name.t -> Name.t) -> ('c, 't) pt -> ('c, 't) pt
(** For local assumptions, this function returns the original local assumptions.
For local definitions, this function maps the value in the local definition. *)
val map_value : ('c -> 'c) -> ('c, 't) pt -> ('c, 't) pt
(** Map the type of the name bound by a given declaration. *)
val map_type : ('t -> 't) -> ('c, 't) pt -> ('c, 't) pt
(** Map all terms in a given declaration. *)
val map_constr : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Map all terms, with an heterogeneous function. *)
val map_constr_het : ('a -> 'b) -> ('a, 'a) pt -> ('b, 'b) pt
(** Perform a given action on all terms in a given declaration. *)
val iter_constr : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given declaration to a single value. *)
val fold_constr : ('c -> 'a -> 'a) -> ('c, 'c) pt -> 'a -> 'a
val to_tuple : ('c, 't) pt -> Name.t binder_annot * 'c option * 't
(** Turn [LocalDef] into [LocalAssum], identity otherwise. *)
val drop_body : ('c, 't) pt -> ('c, 't) pt
end
(** Rel-context is represented as a list of declarations.
Inner-most declarations are at the beginning of the list.
Outer-most declarations are at the end of the list. *)
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
(** empty rel-context *)
val empty : ('c, 't) pt
(** Return a new rel-context enriched by with a given inner-most declaration. *)
val add : ('c, 't) Declaration.pt -> ('c, 't) pt -> ('c, 't) pt
(** Return the number of {e local declarations} in a given rel-context. *)
val length : ('c, 't) pt -> int
(** Check whether given two rel-contexts are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Return the number of {e local assumptions} in a given rel-context. *)
val nhyps : ('c, 't) pt -> int
(** Return a declaration designated by a given de Bruijn index.
@raise Not_found if the designated de Bruijn index outside the range. *)
val lookup : int -> ('c, 't) pt -> ('c, 't) Declaration.pt
(** Map all terms in a given rel-context. *)
val map : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Map all terms in a given rel-context taking into account the
position of the binder in the context starting at 1. *)
val map_with_binders : (int -> 'c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Perform a given action on every declaration in a given rel-context. *)
val iter : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given rel-context to a single value.
Innermost declarations are processed first. *)
val fold_inside : ('a -> ('c, 't) Declaration.pt -> 'a) -> init:'a -> ('c, 't) pt -> 'a
(** Reduce all terms in a given rel-context to a single value.
Outermost declarations are processed first. *)
val fold_outside : (('c, 't) Declaration.pt -> 'a -> 'a) -> ('c, 't) pt -> init:'a -> 'a
(** Return the set of all named variables bound in a given rel-context. *)
val to_vars : ('c, 't) pt -> Id.Set.t
(** Map a given rel-context to a list where each {e local
assumption} is mapped to [true] and each {e local definition} is
mapped to [false]. The resulting list is in reverse order
compared to the order of declarations in the context. *)
val to_tags : ('c, 't) pt -> bool list
(** Turn all [LocalDef] into [LocalAssum], leave [LocalAssum] unchanged. *)
val drop_bodies : ('c, 't) pt -> ('c, 't) pt
(** [chop_nhyps n Γ] returns [Γ'',Γ'] such that [Γ]=[Γ'Γ''], [Γ''] has
[n] hypotheses (i.e. [LocalAssum]), excluding local definitions
(i.e. [LocalDef]), and [Γ''], if [n] non zero, starts with an
hypothesis (i.e., [Γ''] has the form [x:A;Γ'''], i.e., local
definitions at the junction of the [n] hypotheses are put in
[Γ'] rather than in [Γ''] *)
val chop_nhyps : int -> ('c, 't) pt -> ('c, 't) pt * ('c, 't) pt
(** [instance mk n Γ] builds an instance [args] such that [Γ,Δ ⊢ args:Γ]
with n = |Δ| and with the {e local definitions} of [Γ] skipped in
[args] where [mk] is used to build the corresponding variables.
Example: for [x:T, y:=c, z:U] and [n]=2, it gives [mk 5, mk 3]. *)
val instance : (int -> 'r) -> int -> ('c, 't) pt -> 'r array
(** [instance_list] is like [instance] but returning a list. *)
val instance_list : (int -> 'r) -> int -> ('c, 't) pt -> 'r list
val to_extended_vect : (int -> 'r) -> int -> ('c, 't) pt -> 'r array
[@@ocaml.deprecated "Use synonymous [Context.Rel.instance]"]
val to_extended_list : (int -> 'r) -> int -> ('c, 't) pt -> 'r list
[@@ocaml.deprecated "Use synonymous [Context.Rel.instance_list]"]
end
(** This module represents contexts that can capture non-anonymous variables.
Individual declarations are then designated by the identifiers they bind. *)
module Named :
sig
(** Representation of {e local declarations}. *)
module Declaration :
sig
type ('constr, 'types) pt =
| LocalAssum of Id.t binder_annot * 'types (** identifier, type *)
| LocalDef of Id.t binder_annot * 'constr * 'types (** identifier, value, type *)
val get_annot : _ pt -> Id.t binder_annot
(** Return the identifier bound by a given declaration. *)
val get_id : ('c, 't) pt -> Id.t
(** Return [Some value] for local-declarations and [None] for local-assumptions. *)
val get_value : ('c, 't) pt -> 'c option
(** Return the type of the name bound by a given declaration. *)
val get_type : ('c, 't) pt -> 't
val get_relevance : ('c, 't) pt -> Sorts.relevance
(** Set the identifier that is bound by a given declaration. *)
val set_id : Id.t -> ('c, 't) pt -> ('c, 't) pt
(** Set the type of the bound variable in a given declaration. *)
val set_type : 't -> ('c, 't) pt -> ('c, 't) pt
(** Return [true] iff a given declaration is a local assumption. *)
val is_local_assum : ('c, 't) pt -> bool
(** Return [true] iff a given declaration is a local definition. *)
val is_local_def : ('c, 't) pt -> bool
(** Check whether any term in a given declaration satisfies a given predicate. *)
val exists : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether all terms in a given declaration satisfy a given predicate. *)
val for_all : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether the two given declarations are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Map the identifier bound by a given declaration. *)
val map_id : (Id.t -> Id.t) -> ('c, 't) pt -> ('c, 't) pt
(** For local assumptions, this function returns the original local assumptions.
For local definitions, this function maps the value in the local definition. *)
val map_value : ('c -> 'c) -> ('c, 't) pt -> ('c, 't) pt
(** Map the type of the name bound by a given declaration. *)
val map_type : ('t -> 't) -> ('c, 't) pt -> ('c, 't) pt
(** Map all terms in a given declaration. *)
val map_constr : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Map all terms, with an heterogeneous function. *)
val map_constr_het : ('a -> 'b) -> ('a, 'a) pt -> ('b, 'b) pt
(** Perform a given action on all terms in a given declaration. *)
val iter_constr : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given declaration to a single value. *)
val fold_constr : ('c -> 'a -> 'a) -> ('c, 'c) pt -> 'a -> 'a
val to_tuple : ('c, 't) pt -> Id.t binder_annot * 'c option * 't
val of_tuple : Id.t binder_annot * 'c option * 't -> ('c, 't) pt
(** Turn [LocalDef] into [LocalAssum], identity otherwise. *)
val drop_body : ('c, 't) pt -> ('c, 't) pt
(** Convert [Rel.Declaration.t] value to the corresponding [Named.Declaration.t] value.
The function provided as the first parameter determines how to translate "names" to "ids". *)
val of_rel_decl : (Name.t -> Id.t) -> ('c, 't) Rel.Declaration.pt -> ('c, 't) pt
(** Convert [Named.Declaration.t] value to the corresponding [Rel.Declaration.t] value. *)
(* TODO: Move this function to [Rel.Declaration] module and rename it to [of_named]. *)
val to_rel_decl : ('c, 't) pt -> ('c, 't) Rel.Declaration.pt
end
(** Named-context is represented as a list of declarations.
Inner-most declarations are at the beginning of the list.
Outer-most declarations are at the end of the list. *)
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
(** empty named-context *)
val empty : ('c, 't) pt
(** Return a new named-context enriched by with a given inner-most declaration. *)
val add : ('c, 't) Declaration.pt -> ('c, 't) pt -> ('c, 't) pt
(** Return the number of {e local declarations} in a given named-context. *)
val length : ('c, 't) pt -> int
(** Return a declaration designated by an identifier of the variable bound in that declaration.
@raise Not_found if the designated identifier is not bound in a given named-context. *)
val lookup : Id.t -> ('c, 't) pt -> ('c, 't) Declaration.pt
(** Check whether given two named-contexts are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Map all terms in a given named-context. *)
val map : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Perform a given action on every declaration in a given named-context. *)
val iter : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given named-context to a single value.
Innermost declarations are processed first. *)
val fold_inside : ('a -> ('c, 't) Declaration.pt -> 'a) -> init:'a -> ('c, 't) pt -> 'a
(** Reduce all terms in a given named-context to a single value.
Outermost declarations are processed first. *)
val fold_outside : (('c, 't) Declaration.pt -> 'a -> 'a) -> ('c, 't) pt -> init:'a -> 'a
(** Return the set of all identifiers bound in a given named-context. *)
val to_vars : ('c, 't) pt -> Id.Set.t
(** Turn all [LocalDef] into [LocalAssum], leave [LocalAssum] unchanged. *)
val drop_bodies : ('c, 't) pt -> ('c, 't) pt
(** [to_instance Ω] builds an instance [args] in reverse order such
that [Ω ⊢ args:Ω] where [Ω] is a named-context and with the local
definitions of [Ω] skipped. Example: for [id1:T,id2:=c,id3:U], it
gives [Var id1, Var id3]. All [idj] are supposed distinct. *)
val to_instance : (Id.t -> 'r) -> ('c, 't) pt -> 'r list
[@@ocaml.deprecated "[to_instance] was missing a [List.rev] to comply to its specification; rely on [instance] for the correct specification or use [List.rev (instance ...)] for strict compatibility"]
(** [instance Ω] builds an instance [args] such
that [Ω ⊢ args:Ω] where [Ω] is a named-context and with the
local definitions of [Ω] skipped. Example: for the context
[id1:T,id2:=c,id3:U] (which is internally represented by a list
with [id3] at the head), it gives [Var id1, Var id3]. All [idj]
are supposed distinct. *)
val instance : (Id.t -> 'r) -> ('c, 't) pt -> 'r array
(** [instance_list] is like [instance] but returning a list. *)
val instance_list : (Id.t -> 'r) -> ('c, 't) pt -> 'r list
end
module Compacted :
sig
module Declaration :
sig
type ('constr, 'types) pt =
| LocalAssum of Id.t binder_annot list * 'types
| LocalDef of Id.t binder_annot list * 'constr * 'types
val map_constr : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
val of_named_decl : ('c, 't) Named.Declaration.pt -> ('c, 't) pt
val to_named_context : ('c, 't) pt -> ('c, 't) Named.pt
end
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
val fold : (('c, 't) Declaration.pt -> 'a -> 'a) -> ('c, 't) pt -> init:'a -> 'a
end
|