1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
(** This module defines the entry types for global declarations. This
information is entered in the environments. This includes global
constants/axioms, mutual inductive definitions, modules and module
types *)
type universes_entry =
| Monomorphic_entry
| Polymorphic_entry of Univ.UContext.t
type inductive_universes_entry =
| Monomorphic_ind_entry
| Polymorphic_ind_entry of Univ.UContext.t
| Template_ind_entry of Univ.ContextSet.t
type variance_entry = Univ.Variance.t option array
type 'a in_universes_entry = 'a * universes_entry
(** {6 Declaration of inductive types. } *)
(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}
then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)
type one_inductive_entry = {
mind_entry_typename : Id.t;
mind_entry_arity : constr;
mind_entry_consnames : Id.t list;
mind_entry_lc : constr list;
}
type mutual_inductive_entry = {
mind_entry_record : (Id.t array option) option;
(** Some (Some ids): primitive records with ids the binder name of each
record in their respective projections. Not used by the kernel.
Some None: non-primitive record *)
mind_entry_finite : Declarations.recursivity_kind;
mind_entry_params : Constr.rel_context;
mind_entry_inds : one_inductive_entry list;
mind_entry_universes : inductive_universes_entry;
mind_entry_variance : variance_entry option;
(* [None] if non-cumulative, otherwise associates each universe of
the entry to [None] if to be inferred or [Some v] if to be
checked. *)
mind_entry_private : bool option;
}
(** {6 Constants (Definition/Axiom) } *)
type definition_entry = {
const_entry_body : constr;
(* List of section variables *)
const_entry_secctx : Id.Set.t option;
const_entry_type : types option;
const_entry_universes : universes_entry;
const_entry_inline_code : bool;
}
type section_def_entry = {
secdef_body : constr;
secdef_secctx : Id.Set.t option;
secdef_type : types option;
}
type 'a opaque_entry = {
opaque_entry_body : 'a;
(* List of section variables *)
opaque_entry_secctx : Id.Set.t;
opaque_entry_type : types;
opaque_entry_universes : universes_entry;
}
type inline = int option (* inlining level, None for no inlining *)
type parameter_entry = {
parameter_entry_secctx : Id.Set.t option;
parameter_entry_type : types;
parameter_entry_universes : universes_entry;
parameter_entry_inline_code : inline;
}
type primitive_entry = {
prim_entry_type : types in_universes_entry option;
prim_entry_content : CPrimitives.op_or_type;
}
type 'a proof_output = constr Univ.in_universe_context_set * 'a
type constant_entry =
| DefinitionEntry : definition_entry -> constant_entry
| ParameterEntry : parameter_entry -> constant_entry
| PrimitiveEntry : primitive_entry -> constant_entry
(** {6 Modules } *)
type module_struct_entry = (constr * Univ.AbstractContext.t option) Declarations.module_alg_expr
type module_params_entry =
(MBId.t * module_struct_entry * inline) list (** older first *)
type module_type_entry = module_params_entry * module_struct_entry
type module_entry =
| MType of module_params_entry * module_struct_entry
| MExpr of
module_params_entry * module_struct_entry * module_struct_entry option
|