1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Explicit substitutions *)
(** {6 Explicit substitutions } *)
(** Explicit substitutions for some type of terms ['a].
Assuming terms enjoy a notion of typability Γ ⊢ t : A, where Γ is a
telescope and A a type, substitutions can be typed as Γ ⊢ σ : Δ, where
as a first approximation σ is a list of terms u₁; ...; uₙ s.t.
Δ := (x₁ : A₁), ..., (xₙ : Aₙ) and Γ ⊢ uᵢ : Aᵢ{u₁...uᵢ₋₁} for all 1 ≤ i ≤ n.
Substitutions can be applied to terms as follows, and furthermore
if Γ ⊢ σ : Δ and Δ ⊢ t : A, then Γ ⊢ t{σ} : A{σ}.
We make the typing rules explicit below, but we omit the explicit De Bruijn
fidgetting and leave relocations implicit in terms and types.
*)
type 'a subs
(** Derived constructors granting basic invariants *)
(** Assuming |Γ| = n, Γ ⊢ subs_id n : Γ *)
val subs_id : int -> 'a subs
(** Assuming Γ ⊢ σ : Δ and Γ ⊢ t : A{σ}, then Γ ⊢ subs_cons t σ : Δ, A *)
val subs_cons: 'a -> 'a subs -> 'a subs
(** Assuming Γ ⊢ σ : Δ and |Ξ| = n, then Γ, Ξ ⊢ subs_shft (n, σ) : Δ *)
val subs_shft: int * 'a subs -> 'a subs
(** Unary variant of {!subst_liftn}. *)
val subs_lift: 'a subs -> 'a subs
(** Assuming Γ ⊢ σ : Δ and |Ξ| = n, then Γ, Ξ ⊢ subs_liftn n σ : Δ, Ξ *)
val subs_liftn: int -> 'a subs -> 'a subs
(** [expand_rel k subs] expands de Bruijn [k] in the explicit substitution
[subs]. The result is either (Inl(lams,v)) when the variable is
substituted by value [v] under [lams] binders (i.e. v *has* to be
shifted by [lams]), or (Inr (k',p)) when the variable k is just relocated
as k'; p is None if the variable points inside subs and Some(k) if the
variable points k bindings beyond subs (cf argument of ESID).
*)
val expand_rel: int -> 'a subs -> (int * 'a, int * int option) Util.union
(** Tests whether a substitution behaves like the identity *)
val is_subs_id: 'a subs -> bool
(** Composition of substitutions: [comp mk_clos s1 s2] computes a
substitution equivalent to applying s2 then s1. Argument
mk_clos is used when a closure has to be created, i.e. when
s1 is applied on an element of s2.
*)
(** {6 Compact representation } *)
(** Compact representation of explicit relocations
- [ELSHFT(l,n)] == lift of [n], then apply [lift l].
- [ELLFT(n,l)] == apply [l] to de Bruijn > [n] i.e under n binders.
Invariant ensured by the private flag: no lift contains two consecutive
[ELSHFT] nor two consecutive [ELLFT].
Relocations are a particular kind of substitutions that only contain
variables. In particular, [el_*] enjoys the same typing rules as the
equivalent substitution function [subs_*].
*)
type lift = private
| ELID
| ELSHFT of lift * int
| ELLFT of int * lift
(** For arbitrary Γ: Γ ⊢ el_id : Γ *)
val el_id : lift
(** Assuming Γ ⊢ σ : Δ and |Ξ| = n, then Γ, Ξ ⊢ el_shft (n, σ) : Δ *)
val el_shft : int -> lift -> lift
(** Assuming Γ ⊢ σ : Δ and |Ξ| = n, then Γ, Ξ ⊢ el_liftn n σ : Δ, Ξ *)
val el_liftn : int -> lift -> lift
(** Unary variant of {!subst_liftn}. *)
val el_lift : lift -> lift
(** Assuming Γ₁, A, Γ₂ ⊢ σ : Δ₁, A, Δ₂ and Δ₁, A, Δ₂ ⊢ n : A,
then Γ₁, A, Γ₂ ⊢ reloc_rel n σ : A *)
val reloc_rel : int -> lift -> int
val is_lift_id : lift -> bool
(** Lift applied to substitution: [lift_subst mk_clos el s] computes a
substitution equivalent to applying el then s. Argument
mk_clos is used when a closure has to be created, i.e. when
el is applied on an element of s.
That is, if Γ ⊢ e : Δ and Δ ⊢ σ : Ξ, then Γ ⊢ lift_subst mk e σ : Ξ.
*)
val lift_subst : (lift -> 'a -> 'b) -> lift -> 'a subs -> 'b subs
(** Debugging utilities *)
module Internal :
sig
type 'a or_rel = REL of int | VAL of int * 'a
(** High-level representation of a substitution. The first component is a list
that associates a value to an index, and the second component is the
relocation shift that must be applied to any variable pointing outside of
the substitution. *)
val repr : 'a subs -> 'a or_rel list * int
end
|