1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
(** {5 Derived constructors} *)
(** non-dependent product [t1 -> t2], an alias for
[forall (_:t1), t2]. Beware [t_2] is NOT lifted.
Eg: in context [A:Prop], [A->A] is built by [(mkArrow (mkRel 1) (mkRel 2))]
*)
val mkArrow : types -> Sorts.relevance -> types -> constr
val mkArrowR : types -> types -> constr
(** For an always-relevant domain *)
(** Named version of the functions from [Term]. *)
val mkNamedLambda : Id.t Context.binder_annot -> types -> constr -> constr
val mkNamedLetIn : Id.t Context.binder_annot -> constr -> types -> constr -> constr
val mkNamedProd : Id.t Context.binder_annot -> types -> types -> types
(** Constructs either [(x:t)c] or [[x=b:t]c] *)
val mkProd_or_LetIn : Constr.rel_declaration -> types -> types
val mkProd_wo_LetIn : Constr.rel_declaration -> types -> types
val mkNamedProd_or_LetIn : Constr.named_declaration -> types -> types
val mkNamedProd_wo_LetIn : Constr.named_declaration -> types -> types
(** Constructs either [[x:t]c] or [[x=b:t]c] *)
val mkLambda_or_LetIn : Constr.rel_declaration -> constr -> constr
val mkNamedLambda_or_LetIn : Constr.named_declaration -> constr -> constr
(** {5 Other term constructors. } *)
(** [applist (f,args)] and its variants work as [mkApp] *)
val applist : constr * constr list -> constr
val applistc : constr -> constr list -> constr
val appvect : constr * constr array -> constr
val appvectc : constr -> constr array -> constr
(** [prodn n l b] = [forall (x_1:T_1)...(x_n:T_n), b]
where [l] is [(x_n,T_n)...(x_1,T_1)...]. *)
val prodn : int -> (Name.t Context.binder_annot * constr) list -> constr -> constr
(** [compose_prod l b]
@return [forall (x_1:T_1)...(x_n:T_n), b]
where [l] is [(x_n,T_n)...(x_1,T_1)].
Inverse of [decompose_prod]. *)
val compose_prod : (Name.t Context.binder_annot * constr) list -> constr -> constr
(** [lamn n l b]
@return [fun (x_1:T_1)...(x_n:T_n) => b]
where [l] is [(x_n,T_n)...(x_1,T_1)...]. *)
val lamn : int -> (Name.t Context.binder_annot * constr) list -> constr -> constr
(** [compose_lam l b]
@return [fun (x_1:T_1)...(x_n:T_n) => b]
where [l] is [(x_n,T_n)...(x_1,T_1)].
Inverse of [it_destLam] *)
val compose_lam : (Name.t Context.binder_annot * constr) list -> constr -> constr
(** [to_lambda n l]
@return [fun (x_1:T_1)...(x_n:T_n) => T]
where [l] is [forall (x_1:T_1)...(x_n:T_n), T] *)
val to_lambda : int -> constr -> constr
(** [to_prod n l]
@return [forall (x_1:T_1)...(x_n:T_n), T]
where [l] is [fun (x_1:T_1)...(x_n:T_n) => T] *)
val to_prod : int -> constr -> constr
val it_mkLambda_or_LetIn : constr -> Constr.rel_context -> constr
val it_mkProd_wo_LetIn : types -> Constr.rel_context -> types
val it_mkProd_or_LetIn : types -> Constr.rel_context -> types
(** In [lambda_applist c args], [c] is supposed to have the form
[λΓ.c] with [Γ] without let-in; it returns [c] with the variables
of [Γ] instantiated by [args]. *)
val lambda_applist : constr -> constr list -> constr
val lambda_appvect : constr -> constr array -> constr
(** In [lambda_applist_assum n c args], [c] is supposed to have the
form [λΓ.c] with [Γ] of length [n] and possibly with let-ins; it
returns [c] with the assumptions of [Γ] instantiated by [args] and
the local definitions of [Γ] expanded. *)
val lambda_applist_assum : int -> constr -> constr list -> constr
val lambda_appvect_assum : int -> constr -> constr array -> constr
(** pseudo-reduction rule *)
(** [prod_appvect] [forall (x1:B1;...;xn:Bn), B] [a1...an] @return [B[a1...an]] *)
val prod_appvect : types -> constr array -> types
val prod_applist : types -> constr list -> types
(** In [prod_appvect_assum n c args], [c] is supposed to have the
form [∀Γ.c] with [Γ] of length [n] and possibly with let-ins; it
returns [c] with the assumptions of [Γ] instantiated by [args] and
the local definitions of [Γ] expanded. *)
val prod_appvect_assum : int -> types -> constr array -> types
val prod_applist_assum : int -> types -> constr list -> types
(** {5 Other term destructors. } *)
(** Transforms a product term {% $ %}(x_1:T_1)..(x_n:T_n)T{% $ %} into the pair
{% $ %}([(x_n,T_n);...;(x_1,T_1)],T){% $ %}, where {% $ %}T{% $ %} is not a product. *)
val decompose_prod : constr -> (Name.t Context.binder_annot * constr) list * constr
(** Transforms a lambda term {% $ %}[x_1:T_1]..[x_n:T_n]T{% $ %} into the pair
{% $ %}([(x_n,T_n);...;(x_1,T_1)],T){% $ %}, where {% $ %}T{% $ %} is not a lambda. *)
val decompose_lam : constr -> (Name.t Context.binder_annot * constr) list * constr
(** Given a positive integer n, decompose a product term
{% $ %}(x_1:T_1)..(x_n:T_n)T{% $ %}
into the pair {% $ %}([(xn,Tn);...;(x1,T1)],T){% $ %}.
Raise a user error if not enough products. *)
val decompose_prod_n : int -> constr -> (Name.t Context.binder_annot * constr) list * constr
(** Given a positive integer {% $ %}n{% $ %}, decompose a lambda term
{% $ %}[x_1:T_1]..[x_n:T_n]T{% $ %} into the pair {% $ %}([(x_n,T_n);...;(x_1,T_1)],T){% $ %}.
Raise a user error if not enough lambdas. *)
val decompose_lam_n : int -> constr -> (Name.t Context.binder_annot * constr) list * constr
(** Extract the premisses and the conclusion of a term of the form
"(xi:Ti) ... (xj:=cj:Tj) ..., T" where T is not a product nor a let *)
val decompose_prod_assum : types -> Constr.rel_context * types
(** Idem with lambda's and let's *)
val decompose_lam_assum : constr -> Constr.rel_context * constr
(** Idem but extract the first [n] premisses, counting let-ins. *)
val decompose_prod_n_assum : int -> types -> Constr.rel_context * types
(** Idem for lambdas, _not_ counting let-ins *)
val decompose_lam_n_assum : int -> constr -> Constr.rel_context * constr
(** Idem, counting let-ins *)
val decompose_lam_n_decls : int -> constr -> Constr.rel_context * constr
(** Return the premisses/parameters of a type/term (let-in included) *)
val prod_assum : types -> Constr.rel_context
val lam_assum : constr -> Constr.rel_context
(** Return the first n-th premisses/parameters of a type (let included and counted) *)
val prod_n_assum : int -> types -> Constr.rel_context
(** Return the first n-th premisses/parameters of a term (let included but not counted) *)
val lam_n_assum : int -> constr -> Constr.rel_context
(** Remove the premisses/parameters of a type/term *)
val strip_prod : types -> types
val strip_lam : constr -> constr
(** Remove the first n-th premisses/parameters of a type/term *)
val strip_prod_n : int -> types -> types
val strip_lam_n : int -> constr -> constr
(** Remove the premisses/parameters of a type/term (including let-in) *)
val strip_prod_assum : types -> types
val strip_lam_assum : constr -> constr
(** {5 ... } *)
(** An "arity" is a term of the form [[x1:T1]...[xn:Tn]s] with [s] a sort.
Such a term can canonically be seen as the pair of a context of types
and of a sort *)
type arity = Constr.rel_context * Sorts.t
(** Build an "arity" from its canonical form *)
val mkArity : arity -> types
(** Destruct an "arity" into its canonical form *)
val destArity : types -> arity
(** Tell if a term has the form of an arity *)
val isArity : types -> bool
(* Deprecated *)
type sorts_family = Sorts.family = InSProp | InProp | InSet | InType
[@@ocaml.deprecated "Alias for Sorts.family"]
type sorts = Sorts.t = private
| SProp | Prop | Set
| Type of Univ.Universe.t (** Type *)
[@@ocaml.deprecated "Alias for Sorts.t"]
|