1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Invariant: the msb should be 0 *)
type t = Int64.t
let _ = assert (Sys.word_size = 32)
let uint_size = 63
let maxuint63 = 0x7FFF_FFFF_FFFF_FFFFL
let maxuint31 = 0x7FFF_FFFFL
let zero = Int64.zero
let one = Int64.one
(* conversion from an int *)
let mask63 i = Int64.logand i maxuint63
let of_int i = mask63 (Int64.of_int i)
let to_int2 i = (Int64.to_int (Int64.shift_right_logical i 31), Int64.to_int i)
let of_int64 = mask63
let to_int64 i = i
let to_int_min n m =
if Int64.(compare n (of_int m)) < 0 then Int64.to_int n else m
let of_float f = mask63 (Int64.of_float f)
let to_float = Int64.to_float
let hash i =
let (h,l) = to_int2 i in
(*Hashset.combine h l*)
h * 65599 + l
(* conversion of an uint63 to a string *)
let to_string i = Int64.to_string i
(* Compiles an unsigned int to OCaml code *)
let compile i = Printf.sprintf "Uint63.of_int64 (%LiL)" i
(* comparison *)
let lt x y =
Int64.compare x y < 0
let le x y =
Int64.compare x y <= 0
(* signed comparison *)
(* We shift the arguments by 1 to the left so that the top-most bit is interpreted as a sign *)
(* The zero at the end doesn't change the order (it is stable by multiplication by 2) *)
let lts x y =
Int64.(compare (shift_left x 1) (shift_left y 1)) < 0
let les x y =
Int64.(compare (shift_left x 1) (shift_left y 1)) <= 0
(* logical shift *)
let l_sl x y =
if le 0L y && lt y 63L then mask63 (Int64.shift_left x (Int64.to_int y)) else 0L
let l_sr x y =
if le 0L y && lt y 63L then Int64.shift_right x (Int64.to_int y) else 0L
(* arithmetic shift (for sint63) *)
let a_sr x y =
if les 0L y && lts y 63L then
mask63 (Int64.shift_right (Int64.shift_left x 1) ((Int64.to_int y) + 1))
else 0L
let l_and x y = Int64.logand x y
let l_or x y = Int64.logor x y
let l_xor x y = Int64.logxor x y
(* addition of int63 *)
let add x y = mask63 (Int64.add x y)
let addcarry x y = mask63 Int64.(add (add x y) one)
(* subtraction *)
let sub x y = mask63 (Int64.sub x y)
let subcarry x y = mask63 Int64.(sub (sub x y) one)
(* multiplication *)
let mul x y = mask63 (Int64.mul x y)
(* division *)
let div x y =
if y = 0L then 0L else Int64.div x y
(* modulo *)
let rem x y =
if y = 0L then x else Int64.rem x y
let diveucl x y = (div x y, rem x y)
(* signed division *)
let divs x y =
if y = 0L then 0L else mask63 Int64.(div (shift_left x 1) (shift_left y 1))
(* signed modulo *)
let rems x y =
if y = 0L then x else
Int64.shift_right_logical (Int64.(rem (shift_left x 1) (shift_left y 1))) 1
let addmuldiv p x y =
l_or (l_sl x p) (l_sr y Int64.(sub (of_int uint_size) p))
(* division of two numbers by one *)
(* precondition: xh < y *)
(* outputs: q, r s.t. x = q * y + r, r < y *)
let div21 xh xl y =
let nh = ref xh in
let nl = ref xl in
let q = ref 0L in
for _i = 0 to 62 do
(* invariants: 0 <= nh < y, nl = (xl*2^i) % 2^64,
(q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl *)
nl := Int64.shift_left !nl 1;
nh := Int64.logor (Int64.shift_left !nh 1) (Int64.shift_right_logical !nl 63);
q := Int64.shift_left !q 1;
if Int64.unsigned_compare !nh y >= 0 then
begin q := Int64.logor !q 1L; nh := Int64.sub !nh y; end
done;
!q, !nh
let div21 xh xl y =
if Int64.compare y xh <= 0 then zero, zero else div21 xh xl y
(* exact multiplication *)
let mulc x y =
let lx = Int64.logand x maxuint31 in
let ly = Int64.logand y maxuint31 in
let hx = Int64.shift_right x 31 in
let hy = Int64.shift_right y 31 in
(* compute the median products *)
let s = Int64.add (Int64.mul lx hy) (Int64.mul hx ly) in
(* s fits on 64 bits, split it into a 33-bit high part and a 31-bit low part *)
let lr = Int64.shift_left (Int64.logand s maxuint31) 31 in
let hr = Int64.shift_right_logical s 31 in
(* add the outer products *)
let lr = Int64.add (Int64.mul lx ly) lr in
let hr = Int64.add (Int64.mul hx hy) hr in
(* hr fits on 64 bits, since the final result fits on 126 bits *)
(* now x * y = hr * 2^62 + lr and lr < 2^63 *)
let lr = Int64.add lr (Int64.shift_left (Int64.logand hr 1L) 62) in
let hr = Int64.shift_right_logical hr 1 in
(* now x * y = hr * 2^63 + lr, but lr might be too large *)
if Int64.logand lr Int64.min_int <> 0L
then Int64.add hr 1L, mask63 lr
else hr, lr
let equal (x : t) y = x = y
let compare x y = Int64.compare x y
let compares x y = Int64.(compare (shift_left x 1) (shift_left y 1))
(* Number of leading zeroes *)
let head0 x =
let r = ref 0 in
let x = ref x in
if Int64.logand !x 0x7FFFFFFF00000000L = 0L then r := !r + 31
else x := Int64.shift_right !x 31;
if Int64.logand !x 0xFFFF0000L = 0L then (x := Int64.shift_left !x 16; r := !r + 16);
if Int64.logand !x 0xFF000000L = 0L then (x := Int64.shift_left !x 8; r := !r + 8);
if Int64.logand !x 0xF0000000L = 0L then (x := Int64.shift_left !x 4; r := !r + 4);
if Int64.logand !x 0xC0000000L = 0L then (x := Int64.shift_left !x 2; r := !r + 2);
if Int64.logand !x 0x80000000L = 0L then (x := Int64.shift_left !x 1; r := !r + 1);
if Int64.logand !x 0x80000000L = 0L then (r := !r + 1);
Int64.of_int !r
(* Number of trailing zeroes *)
let tail0 x =
let r = ref 0 in
let x = ref x in
if Int64.logand !x 0xFFFFFFFFL = 0L then (x := Int64.shift_right !x 32; r := !r + 32);
if Int64.logand !x 0xFFFFL = 0L then (x := Int64.shift_right !x 16; r := !r + 16);
if Int64.logand !x 0xFFL = 0L then (x := Int64.shift_right !x 8; r := !r + 8);
if Int64.logand !x 0xFL = 0L then (x := Int64.shift_right !x 4; r := !r + 4);
if Int64.logand !x 0x3L = 0L then (x := Int64.shift_right !x 2; r := !r + 2);
if Int64.logand !x 0x1L = 0L then (r := !r + 1);
Int64.of_int !r
(* May an object be safely cast into an Uint63.t ? *)
let is_uint63 t =
Obj.is_block t && Int.equal (Obj.tag t) Obj.custom_tag
&& le (Obj.magic t) maxuint63
(* Arithmetic with explicit carries *)
(* Analog of Numbers.Abstract.Cyclic.carry *)
type 'a carry = C0 of 'a | C1 of 'a
let addc x y =
let r = add x y in
if lt r x then C1 r else C0 r
let addcarryc x y =
let r = addcarry x y in
if le r x then C1 r else C0 r
let subc x y =
let r = sub x y in
if le y x then C0 r else C1 r
let subcarryc x y =
let r = subcarry x y in
if lt y x then C0 r else C1 r
(* Register all exported functions so that they can be called from C code *)
let () =
Callback.register "uint63 add" add;
Callback.register "uint63 addcarry" addcarry;
Callback.register "uint63 addmuldiv" addmuldiv;
Callback.register "uint63 div" div;
Callback.register "uint63 divs" divs;
Callback.register "uint63 div21_ml" div21;
Callback.register "uint63 eq" equal;
Callback.register "uint63 eq0" (equal Int64.zero);
Callback.register "uint63 eqm1" (equal (sub zero one));
Callback.register "uint63 head0" head0;
Callback.register "uint63 land" l_and;
Callback.register "uint63 leq" le;
Callback.register "uint63 les" les;
Callback.register "uint63 lor" l_or;
Callback.register "uint63 lsl" l_sl;
Callback.register "uint63 lsr" l_sr;
Callback.register "uint63 asr" a_sr;
Callback.register "uint63 lt" lt;
Callback.register "uint63 lts" lts;
Callback.register "uint63 lxor" l_xor;
Callback.register "uint63 mod" rem;
Callback.register "uint63 mods" rems;
Callback.register "uint63 mul" mul;
Callback.register "uint63 mulc_ml" mulc;
Callback.register "uint63 zero" zero;
Callback.register "uint63 one" one;
Callback.register "uint63 sub" sub;
Callback.register "uint63 neg" (sub zero);
Callback.register "uint63 subcarry" subcarry;
Callback.register "uint63 tail0" tail0;
Callback.register "uint63 of_float" of_float;
Callback.register "uint63 to_float" to_float;
Callback.register "uint63 of_int" of_int;
Callback.register "uint63 to_int_min" to_int_min
|