File: uint63_31.ml

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (254 lines) | stat: -rw-r--r-- 8,521 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Invariant: the msb should be 0 *)
type t = Int64.t

let _ = assert (Sys.word_size = 32)

let uint_size = 63

let maxuint63 = 0x7FFF_FFFF_FFFF_FFFFL
let maxuint31 = 0x7FFF_FFFFL

let zero = Int64.zero
let one = Int64.one

    (* conversion from an int *)
let mask63 i = Int64.logand i maxuint63
let of_int i = mask63 (Int64.of_int i)
let to_int2 i = (Int64.to_int (Int64.shift_right_logical i 31), Int64.to_int i)
let of_int64 = mask63
let to_int64 i = i

let to_int_min n m =
  if Int64.(compare n (of_int m)) < 0 then Int64.to_int n else m

let of_float f = mask63 (Int64.of_float f)
let to_float = Int64.to_float

let hash i =
  let (h,l) = to_int2 i in
  (*Hashset.combine h l*)
  h * 65599 + l

    (* conversion of an uint63 to a string *)
let to_string i = Int64.to_string i

(* Compiles an unsigned int to OCaml code *)
let compile i = Printf.sprintf "Uint63.of_int64 (%LiL)" i

    (* comparison *)
let lt x y =
  Int64.compare x y < 0

let le x y =
  Int64.compare x y <= 0

    (* signed comparison *)
(* We shift the arguments by 1 to the left so that the top-most bit is interpreted as a sign *)
(* The zero at the end doesn't change the order (it is stable by multiplication by 2) *)
let lts x y =
  Int64.(compare (shift_left x 1) (shift_left y 1)) < 0

let les x y =
  Int64.(compare (shift_left x 1) (shift_left y 1)) <= 0

    (* logical shift *)
let l_sl x y =
  if le 0L y && lt y 63L then mask63 (Int64.shift_left x (Int64.to_int y)) else 0L

let l_sr x y =
  if le 0L y && lt y 63L then Int64.shift_right x (Int64.to_int y) else 0L

    (* arithmetic shift (for sint63) *)
let a_sr x y =
  if les 0L y && lts y 63L then
    mask63 (Int64.shift_right (Int64.shift_left x 1) ((Int64.to_int y) + 1))
  else 0L

let l_and x y = Int64.logand x y
let l_or x y = Int64.logor x y
let l_xor x y = Int64.logxor x y

    (* addition of int63 *)
let add x y = mask63 (Int64.add x y)

let addcarry x y = mask63 Int64.(add (add x y) one)

    (* subtraction *)
let sub x y = mask63 (Int64.sub x y)

let subcarry x y = mask63 Int64.(sub (sub x y) one)

    (* multiplication *)
let mul x y = mask63 (Int64.mul x y)

    (* division *)
let div x y =
  if y = 0L then 0L else Int64.div x y

    (* modulo *)
let rem x y =
  if y = 0L then x else Int64.rem x y

let diveucl x y = (div x y, rem x y)

    (* signed division *)
let divs x y =
  if y = 0L then 0L else mask63 Int64.(div (shift_left x 1) (shift_left y 1))

    (* signed modulo *)
let rems x y =
  if y = 0L then x else
    Int64.shift_right_logical (Int64.(rem (shift_left x 1) (shift_left y 1))) 1

let addmuldiv p x y =
  l_or (l_sl x p) (l_sr y Int64.(sub (of_int uint_size) p))

    (* division of two numbers by one *)
(* precondition: xh < y *)
(* outputs: q, r s.t. x = q * y + r, r < y *)
let div21 xh xl y =
  let nh = ref xh in
  let nl = ref xl in
  let q = ref 0L in
  for _i = 0 to 62 do
    (* invariants: 0 <= nh < y, nl = (xl*2^i) % 2^64,
       (q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl *)
    nl := Int64.shift_left !nl 1;
    nh := Int64.logor (Int64.shift_left !nh 1) (Int64.shift_right_logical !nl 63);
    q := Int64.shift_left !q 1;
    if Int64.unsigned_compare !nh y >= 0 then
      begin q := Int64.logor !q 1L; nh := Int64.sub !nh y; end
  done;
  !q, !nh

let div21 xh xl y =
  if Int64.compare y xh <= 0 then zero, zero else div21 xh xl y

(* exact multiplication *)
let mulc x y =
  let lx = Int64.logand x maxuint31 in
  let ly = Int64.logand y maxuint31 in
  let hx = Int64.shift_right x 31 in
  let hy = Int64.shift_right y 31 in
  (* compute the median products *)
  let s = Int64.add (Int64.mul lx hy) (Int64.mul hx ly) in
  (* s fits on 64 bits, split it into a 33-bit high part and a 31-bit low part *)
  let lr = Int64.shift_left (Int64.logand s maxuint31) 31 in
  let hr = Int64.shift_right_logical s 31 in
  (* add the outer products *)
  let lr = Int64.add (Int64.mul lx ly) lr in
  let hr = Int64.add (Int64.mul hx hy) hr in
  (* hr fits on 64 bits, since the final result fits on 126 bits *)
  (* now x * y = hr * 2^62 + lr and lr < 2^63 *)
  let lr = Int64.add lr (Int64.shift_left (Int64.logand hr 1L) 62) in
  let hr = Int64.shift_right_logical hr 1 in
  (* now x * y = hr * 2^63 + lr, but lr might be too large *)
  if Int64.logand lr Int64.min_int <> 0L
  then Int64.add hr 1L, mask63 lr
  else hr, lr

let equal (x : t) y = x = y

let compare x y = Int64.compare x y

let compares x y = Int64.(compare (shift_left x 1) (shift_left y 1))

(* Number of leading zeroes *)
let head0 x =
  let r = ref 0 in
  let x = ref x in
  if Int64.logand !x 0x7FFFFFFF00000000L = 0L then r := !r + 31
  else x := Int64.shift_right !x 31;
  if Int64.logand !x 0xFFFF0000L = 0L then (x := Int64.shift_left !x 16; r := !r + 16);
  if Int64.logand !x 0xFF000000L = 0L then (x := Int64.shift_left !x 8; r := !r + 8);
  if Int64.logand !x 0xF0000000L = 0L then (x := Int64.shift_left !x 4; r := !r + 4);
  if Int64.logand !x 0xC0000000L = 0L then (x := Int64.shift_left !x 2; r := !r + 2);
  if Int64.logand !x 0x80000000L = 0L then (x := Int64.shift_left !x 1; r := !r + 1);
  if Int64.logand !x 0x80000000L = 0L then (r := !r + 1);
  Int64.of_int !r

(* Number of trailing zeroes *)
let tail0 x =
  let r = ref 0 in
  let x = ref x in
  if Int64.logand !x 0xFFFFFFFFL = 0L then (x := Int64.shift_right !x 32; r := !r + 32);
  if Int64.logand !x 0xFFFFL = 0L then (x := Int64.shift_right !x 16; r := !r + 16);
  if Int64.logand !x 0xFFL = 0L then (x := Int64.shift_right !x 8; r := !r + 8);
  if Int64.logand !x 0xFL = 0L then (x := Int64.shift_right !x 4; r := !r + 4);
  if Int64.logand !x 0x3L = 0L then (x := Int64.shift_right !x 2; r := !r + 2);
  if Int64.logand !x 0x1L = 0L then (r := !r + 1);
  Int64.of_int !r

(* May an object be safely cast into an Uint63.t ? *)
let is_uint63 t =
  Obj.is_block t && Int.equal (Obj.tag t) Obj.custom_tag
  && le (Obj.magic t) maxuint63

(* Arithmetic with explicit carries *)

(* Analog of Numbers.Abstract.Cyclic.carry *)
type 'a carry = C0 of 'a | C1 of 'a

let addc x y =
  let r = add x y in
  if lt r x then C1 r else C0 r

let addcarryc x y =
  let r = addcarry x y in
  if le r x then C1 r else C0 r

let subc x y =
  let r = sub x y in
  if le y x then C0 r else C1 r

let subcarryc x y =
  let r = subcarry x y in
  if lt y x then C0 r else C1 r

(* Register all exported functions so that they can be called from C code *)

let () =
  Callback.register "uint63 add" add;
  Callback.register "uint63 addcarry" addcarry;
  Callback.register "uint63 addmuldiv" addmuldiv;
  Callback.register "uint63 div" div;
  Callback.register "uint63 divs" divs;
  Callback.register "uint63 div21_ml" div21;
  Callback.register "uint63 eq" equal;
  Callback.register "uint63 eq0" (equal Int64.zero);
  Callback.register "uint63 eqm1" (equal (sub zero one));
  Callback.register "uint63 head0" head0;
  Callback.register "uint63 land" l_and;
  Callback.register "uint63 leq" le;
  Callback.register "uint63 les" les;
  Callback.register "uint63 lor" l_or;
  Callback.register "uint63 lsl" l_sl;
  Callback.register "uint63 lsr" l_sr;
  Callback.register "uint63 asr" a_sr;
  Callback.register "uint63 lt" lt;
  Callback.register "uint63 lts" lts;
  Callback.register "uint63 lxor" l_xor;
  Callback.register "uint63 mod" rem;
  Callback.register "uint63 mods" rems;
  Callback.register "uint63 mul" mul;
  Callback.register "uint63 mulc_ml" mulc;
  Callback.register "uint63 zero" zero;
  Callback.register "uint63 one" one;
  Callback.register "uint63 sub" sub;
  Callback.register "uint63 neg" (sub zero);
  Callback.register "uint63 subcarry" subcarry;
  Callback.register "uint63 tail0" tail0;
  Callback.register "uint63 of_float" of_float;
  Callback.register "uint63 to_float" to_float;
  Callback.register "uint63 of_int" of_int;
  Callback.register "uint63 to_int_min" to_int_min