File: univ.mli

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (453 lines) | stat: -rw-r--r-- 13,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** Qualified global universe level *)
module UGlobal :
sig

  type t

  val make : Names.DirPath.t -> string -> int -> t
  val repr : t -> Names.DirPath.t * string * int
  val equal : t -> t -> bool
  val hash : t -> int
  val compare : t -> t -> int

end

(** Universes. *)
module Level :
sig

  type t
  (** Type of universe levels. A universe level is essentially a unique name
      that will be associated to constraints later on. A level can be local to a
      definition or global. *)

  val set : t
  (** The Set universe level. *)

  val is_set : t -> bool
  (** Is the universe Set? *)

  val compare : t -> t -> int
  (** Comparison function *)

  val equal : t -> t -> bool
  (** Equality function *)

  val hash : t -> int

  val make : UGlobal.t -> t

  val pr : t -> Pp.t
  (** Pretty-printing *)

  val to_string : t -> string
  (** Debug printing *)

  val var : int -> t

  val var_index : t -> int option

  val name : t -> UGlobal.t option

  module Set :
    sig
      include CSig.SetS with type elt = t

      val pr : (elt -> Pp.t) -> t -> Pp.t
      (** Pretty-printing *)
    end

  module Map :
  sig
    include CMap.ExtS with type key = t and module Set := Set

    val lunion : 'a t -> 'a t -> 'a t
    (** [lunion x y] favors the bindings in the first map. *)

    val diff : 'a t -> 'a t -> 'a t
    (** [diff x y] removes bindings from x that appear in y (whatever the value). *)

    val subst_union : 'a option t -> 'a option t -> 'a option t
    (** [subst_union x y] favors the bindings of the first map that are [Some],
        otherwise takes y's bindings. *)

    val pr : ('a -> Pp.t) -> 'a t -> Pp.t
    (** Pretty-printing *)
  end

end

module Universe :
sig
  type t
  (** Type of universes. A universe is defined as a set of level expressions.
      A level expression is built from levels and successors of level expressions, i.e.:
      le ::= l + n, n \in N.

      A universe is said atomic if it consists of a single level expression with
      no increment, and algebraic otherwise (think the least upper bound of a set of
      level expressions).
  *)

  val compare : t -> t -> int
  (** Comparison function *)

  val equal : t -> t -> bool
  (** Equality function on formal universes *)

  val hash : t -> int
  (** Hash function *)

  val make : Level.t -> t
  (** Create a universe representing the given level. *)

  val pr : t -> Pp.t
  (** Pretty-printing *)

  val pr_with : (Level.t -> Pp.t) -> t -> Pp.t

  val is_level : t -> bool
  (** Test if the universe is a level or an algebraic universe. *)

  val is_levels : t -> bool
  (** Test if the universe is a lub of levels or contains +n's. *)

  val level : t -> Level.t option
  (** Try to get a level out of a universe, returns [None] if it
      is an algebraic universe. *)

  val levels : t -> Level.Set.t
  (** Get the levels inside the universe, forgetting about increments *)

  val super : t -> t
  (** The universe strictly above *)

  val sup   : t -> t -> t
  (** The l.u.b. of 2 universes *)

  val type0 : t
  (** image of Set in the universes hierarchy *)

  val type1 : t
  (** the universe of the type of Prop/Set *)

  val is_type0 : t -> bool

  val exists : (Level.t * int -> bool) -> t -> bool
  val for_all : (Level.t * int -> bool) -> t -> bool
  val repr : t -> (Level.t * int) list

  module Set : CSet.S with type elt  = t
  module Map : CMap.ExtS with type key = t and module Set := Set

end

(** [univ_level_mem l u] Is l is mentioned in u ? *)

val univ_level_mem : Level.t -> Universe.t -> bool

(** [univ_level_rem u v min] removes [u] from [v], resulting in [min]
    if [v] was exactly [u]. *)

val univ_level_rem : Level.t -> Universe.t -> Universe.t -> Universe.t

(** {6 Constraints. } *)

type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq
type univ_constraint = Level.t * constraint_type * Level.t

module Constraints : sig
 include Set.S with type elt = univ_constraint
end

(** A value with universe Constraints.t. *)
type 'a constrained = 'a * Constraints.t

(** Constrained *)
val constraints_of : 'a constrained -> Constraints.t

(** Enforcing Constraints.t. *)
type 'a constraint_function = 'a -> 'a -> Constraints.t -> Constraints.t

val enforce_eq_level : Level.t constraint_function
val enforce_leq_level : Level.t constraint_function

(** Type explanation is used to decorate error messages to provide
  useful explanation why a given constraint is rejected. It is composed
  of a path of universes and relation kinds [(r1,u1);..;(rn,un)] means
   .. <(r1) u1 <(r2) ... <(rn) un (where <(ri) is the relation symbol
  denoted by ri, currently only < and <=). The lowest end of the chain
  is supposed known (see UniverseInconsistency exn). The upper end may
  differ from the second univ of UniverseInconsistency because all
  universes in the path are canonical. Note that each step does not
  necessarily correspond to an actual constraint, but reflect how the
  system stores the graph and may result from combination of several
  Constraints.t...
*)
type explanation = (constraint_type * Level.t) list

(** {6 Support for universe polymorphism } *)

module Variance :
sig
  (** A universe position in the instance given to a cumulative
     inductive can be the following. Note there is no Contravariant
     case because [forall x : A, B <= forall x : A', B'] requires [A =
     A'] as opposed to [A' <= A]. *)
  type t = Irrelevant | Covariant | Invariant

  (** [check_subtype x y] holds if variance [y] is also an instance of [x] *)
  val check_subtype : t -> t -> bool

  val sup : t -> t -> t

  val pr : t -> Pp.t

  val equal : t -> t -> bool

end

(** {6 Universe instances} *)

module Instance :
sig
  type t
  (** A universe instance represents a vector of argument universes
      to a polymorphic definition (constant, inductive or constructor). *)

  val empty : t
  val is_empty : t -> bool

  val of_array : Level.t array -> t
  val to_array : t -> Level.t array

  val append : t -> t -> t
  (** To concatenate two instances, used for discharge *)

  val equal : t -> t -> bool
  (** Equality *)

  val length : t -> int
  (** Instance length *)

  val hcons : t -> t
  (** Hash-consing. *)

  val hash : t -> int
  (** Hash value *)

  val share : t -> t * int
  (** Simultaneous hash-consing and hash-value computation *)

  val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t
  (** Pretty-printing, no comments *)

  val levels : t -> Level.Set.t
  (** The set of levels in the instance *)

end

val enforce_eq_instances : Instance.t constraint_function

val enforce_eq_variance_instances : Variance.t array -> Instance.t constraint_function
val enforce_leq_variance_instances : Variance.t array -> Instance.t constraint_function

type 'a puniverses = 'a * Instance.t
val out_punivs : 'a puniverses -> 'a
val in_punivs : 'a -> 'a puniverses

val eq_puniverses : ('a -> 'a -> bool) -> 'a puniverses -> 'a puniverses -> bool

(** A vector of universe levels with universe Constraints.t,
    representing local universe variables and associated Constraints.t;
    the names are user-facing names for printing *)

module UContext :
sig
  type t

  val make : Names.Name.t array -> Instance.t constrained -> t

  val empty : t
  val is_empty : t -> bool

  val instance : t -> Instance.t
  val constraints : t -> Constraints.t

  val union : t -> t -> t
  (** Keeps the order of the instances *)

  val size : t -> int
  (** The number of universes in the context *)

  val names : t -> Names.Name.t array
  (** Return the user names of the universes *)

  val refine_names : Names.Name.t array -> t -> t
  (** Use names to name the possibly yet unnamed universes *)

end

module AbstractContext :
sig
  type t
  (** An abstract context serves to quantify over a graph of universes
      represented using de Bruijn indices, as in:
      u0, ..., u(n-1), Var i < Var j, .., Var k <= Var l |- term(Var 0 .. Var (n-1))
      \-------------/  \-------------------------------/    \---------------------/
      names for        constraints expressed on de Bruijn   judgement in abstract
      printing         representation of the n univ vars    context expected to
                                                            use de Bruijn indices
  *)

  val make : Names.Name.t array -> Constraints.t -> t
  (** Build an abstract context. Constraints may be between universe
     variables. *)

  val repr : t -> UContext.t
  (** [repr ctx] is [(Var(0), ... Var(n-1) |= cstr] where [n] is the length of
      the context and [cstr] the abstracted Constraints.t. *)

  val empty : t
  val is_empty : t -> bool

  val size : t -> int

  val union : t -> t -> t
  (** The constraints are expected to be relative to the concatenated set of universes *)

  val instantiate : Instance.t -> t -> Constraints.t
  (** Generate the set of instantiated Constraints.t **)

  val names : t -> Names.Name.t array
  (** Return the names of the bound universe variables *)

end

type 'a univ_abstracted = {
  univ_abstracted_value : 'a;
  univ_abstracted_binder : AbstractContext.t;
}
(** A value with bound universe levels. *)

val map_univ_abstracted : ('a -> 'b) -> 'a univ_abstracted -> 'b univ_abstracted

(** Universe contexts (as sets) *)

(** A set of universes with universe Constraints.t.
    We linearize the set to a list after typechecking.
    Beware, representation could change.
*)

module ContextSet :
sig
  type t = Level.Set.t constrained

  val empty : t
  val is_empty : t -> bool

  val singleton : Level.t -> t
  val of_instance : Instance.t -> t
  val of_set : Level.Set.t -> t

  val equal : t -> t -> bool
  val union : t -> t -> t

  val append : t -> t -> t
  (** Variant of {!union} which is more efficient when the left argument is
      much smaller than the right one. *)

  val diff : t -> t -> t
  val add_universe : Level.t -> t -> t
  val add_constraints : Constraints.t -> t -> t
  val add_instance : Instance.t -> t -> t

  val sort_levels : Level.t array -> Level.t array
  (** Arbitrary choice of linear order of the variables *)

  val to_context : (Instance.t -> Names.Name.t array) -> t -> UContext.t
  (** Build a vector of universe levels assuming a function generating names *)

  val of_context : UContext.t -> t

  val constraints : t -> Constraints.t
  val levels : t -> Level.Set.t

  val size : t -> int
  (** The number of universes in the context *)

end

(** A value in a universe context (resp. context set). *)
type 'a in_universe_context = 'a * UContext.t
type 'a in_universe_context_set = 'a * ContextSet.t

val extend_in_context_set : 'a in_universe_context_set -> ContextSet.t ->
  'a in_universe_context_set

(** {6 Substitution} *)

type universe_level_subst = Level.t Level.Map.t

val empty_level_subst : universe_level_subst
val is_empty_level_subst : universe_level_subst -> bool

(** Substitution of universes. *)
val subst_univs_level_level : universe_level_subst -> Level.t -> Level.t
val subst_univs_level_universe : universe_level_subst -> Universe.t -> Universe.t
val subst_univs_level_constraints : universe_level_subst -> Constraints.t -> Constraints.t
val subst_univs_level_abstract_universe_context :
  universe_level_subst -> AbstractContext.t -> AbstractContext.t
val subst_univs_level_instance : universe_level_subst -> Instance.t -> Instance.t

(** Level to universe substitutions. *)

(** Substitution of instances *)
val subst_instance_instance : Instance.t -> Instance.t -> Instance.t
val subst_instance_universe : Instance.t -> Universe.t -> Universe.t

val make_instance_subst : Instance.t -> universe_level_subst
(** Creates [u(0) ↦ 0; ...; u(n-1) ↦ n - 1] out of [u(0); ...; u(n - 1)] *)

val abstract_universes : UContext.t -> Instance.t * AbstractContext.t
(** TODO: move universe abstraction out of the kernel *)

val make_abstract_instance : AbstractContext.t -> Instance.t

(** [compact_univ u] remaps local variables in [u] such that their indices become
     consecutive. It returns the new universe and the mapping.
     Example: compact_univ [(Var 0, i); (Prop, 0); (Var 2; j))] =
       [(Var 0,i); (Prop, 0); (Var 1; j)], [0; 2]
*)
val compact_univ : Universe.t -> Universe.t * int list

(** {6 Pretty-printing of universes. } *)

val pr_constraint_type : constraint_type -> Pp.t
val pr_constraints : (Level.t -> Pp.t) -> Constraints.t -> Pp.t
val pr_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array ->
  UContext.t -> Pp.t
val pr_abstract_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array ->
  AbstractContext.t -> Pp.t
val pr_universe_context_set : (Level.t -> Pp.t) -> ContextSet.t -> Pp.t

val pr_universe_level_subst : universe_level_subst -> Pp.t

(** {6 Hash-consing } *)

val hcons_univ : Universe.t -> Universe.t
val hcons_constraints : Constraints.t -> Constraints.t
val hcons_universe_set : Level.Set.t -> Level.Set.t
val hcons_universe_context : UContext.t -> UContext.t
val hcons_abstract_universe_context : AbstractContext.t -> AbstractContext.t
val hcons_universe_context_set : ContextSet.t -> ContextSet.t