1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Qualified global universe level *)
module UGlobal :
sig
type t
val make : Names.DirPath.t -> string -> int -> t
val repr : t -> Names.DirPath.t * string * int
val equal : t -> t -> bool
val hash : t -> int
val compare : t -> t -> int
end
(** Universes. *)
module Level :
sig
type t
(** Type of universe levels. A universe level is essentially a unique name
that will be associated to constraints later on. A level can be local to a
definition or global. *)
val set : t
(** The Set universe level. *)
val is_set : t -> bool
(** Is the universe Set? *)
val compare : t -> t -> int
(** Comparison function *)
val equal : t -> t -> bool
(** Equality function *)
val hash : t -> int
val make : UGlobal.t -> t
val pr : t -> Pp.t
(** Pretty-printing *)
val to_string : t -> string
(** Debug printing *)
val var : int -> t
val var_index : t -> int option
val name : t -> UGlobal.t option
module Set :
sig
include CSig.SetS with type elt = t
val pr : (elt -> Pp.t) -> t -> Pp.t
(** Pretty-printing *)
end
module Map :
sig
include CMap.ExtS with type key = t and module Set := Set
val lunion : 'a t -> 'a t -> 'a t
(** [lunion x y] favors the bindings in the first map. *)
val diff : 'a t -> 'a t -> 'a t
(** [diff x y] removes bindings from x that appear in y (whatever the value). *)
val subst_union : 'a option t -> 'a option t -> 'a option t
(** [subst_union x y] favors the bindings of the first map that are [Some],
otherwise takes y's bindings. *)
val pr : ('a -> Pp.t) -> 'a t -> Pp.t
(** Pretty-printing *)
end
end
module Universe :
sig
type t
(** Type of universes. A universe is defined as a set of level expressions.
A level expression is built from levels and successors of level expressions, i.e.:
le ::= l + n, n \in N.
A universe is said atomic if it consists of a single level expression with
no increment, and algebraic otherwise (think the least upper bound of a set of
level expressions).
*)
val compare : t -> t -> int
(** Comparison function *)
val equal : t -> t -> bool
(** Equality function on formal universes *)
val hash : t -> int
(** Hash function *)
val make : Level.t -> t
(** Create a universe representing the given level. *)
val pr : t -> Pp.t
(** Pretty-printing *)
val pr_with : (Level.t -> Pp.t) -> t -> Pp.t
val is_level : t -> bool
(** Test if the universe is a level or an algebraic universe. *)
val is_levels : t -> bool
(** Test if the universe is a lub of levels or contains +n's. *)
val level : t -> Level.t option
(** Try to get a level out of a universe, returns [None] if it
is an algebraic universe. *)
val levels : t -> Level.Set.t
(** Get the levels inside the universe, forgetting about increments *)
val super : t -> t
(** The universe strictly above *)
val sup : t -> t -> t
(** The l.u.b. of 2 universes *)
val type0 : t
(** image of Set in the universes hierarchy *)
val type1 : t
(** the universe of the type of Prop/Set *)
val is_type0 : t -> bool
val exists : (Level.t * int -> bool) -> t -> bool
val for_all : (Level.t * int -> bool) -> t -> bool
val repr : t -> (Level.t * int) list
module Set : CSet.S with type elt = t
module Map : CMap.ExtS with type key = t and module Set := Set
end
(** [univ_level_mem l u] Is l is mentioned in u ? *)
val univ_level_mem : Level.t -> Universe.t -> bool
(** [univ_level_rem u v min] removes [u] from [v], resulting in [min]
if [v] was exactly [u]. *)
val univ_level_rem : Level.t -> Universe.t -> Universe.t -> Universe.t
(** {6 Constraints. } *)
type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq
type univ_constraint = Level.t * constraint_type * Level.t
module Constraints : sig
include Set.S with type elt = univ_constraint
end
(** A value with universe Constraints.t. *)
type 'a constrained = 'a * Constraints.t
(** Constrained *)
val constraints_of : 'a constrained -> Constraints.t
(** Enforcing Constraints.t. *)
type 'a constraint_function = 'a -> 'a -> Constraints.t -> Constraints.t
val enforce_eq_level : Level.t constraint_function
val enforce_leq_level : Level.t constraint_function
(** Type explanation is used to decorate error messages to provide
useful explanation why a given constraint is rejected. It is composed
of a path of universes and relation kinds [(r1,u1);..;(rn,un)] means
.. <(r1) u1 <(r2) ... <(rn) un (where <(ri) is the relation symbol
denoted by ri, currently only < and <=). The lowest end of the chain
is supposed known (see UniverseInconsistency exn). The upper end may
differ from the second univ of UniverseInconsistency because all
universes in the path are canonical. Note that each step does not
necessarily correspond to an actual constraint, but reflect how the
system stores the graph and may result from combination of several
Constraints.t...
*)
type explanation = (constraint_type * Level.t) list
(** {6 Support for universe polymorphism } *)
module Variance :
sig
(** A universe position in the instance given to a cumulative
inductive can be the following. Note there is no Contravariant
case because [forall x : A, B <= forall x : A', B'] requires [A =
A'] as opposed to [A' <= A]. *)
type t = Irrelevant | Covariant | Invariant
(** [check_subtype x y] holds if variance [y] is also an instance of [x] *)
val check_subtype : t -> t -> bool
val sup : t -> t -> t
val pr : t -> Pp.t
val equal : t -> t -> bool
end
(** {6 Universe instances} *)
module Instance :
sig
type t
(** A universe instance represents a vector of argument universes
to a polymorphic definition (constant, inductive or constructor). *)
val empty : t
val is_empty : t -> bool
val of_array : Level.t array -> t
val to_array : t -> Level.t array
val append : t -> t -> t
(** To concatenate two instances, used for discharge *)
val equal : t -> t -> bool
(** Equality *)
val length : t -> int
(** Instance length *)
val hcons : t -> t
(** Hash-consing. *)
val hash : t -> int
(** Hash value *)
val share : t -> t * int
(** Simultaneous hash-consing and hash-value computation *)
val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t
(** Pretty-printing, no comments *)
val levels : t -> Level.Set.t
(** The set of levels in the instance *)
end
val enforce_eq_instances : Instance.t constraint_function
val enforce_eq_variance_instances : Variance.t array -> Instance.t constraint_function
val enforce_leq_variance_instances : Variance.t array -> Instance.t constraint_function
type 'a puniverses = 'a * Instance.t
val out_punivs : 'a puniverses -> 'a
val in_punivs : 'a -> 'a puniverses
val eq_puniverses : ('a -> 'a -> bool) -> 'a puniverses -> 'a puniverses -> bool
(** A vector of universe levels with universe Constraints.t,
representing local universe variables and associated Constraints.t;
the names are user-facing names for printing *)
module UContext :
sig
type t
val make : Names.Name.t array -> Instance.t constrained -> t
val empty : t
val is_empty : t -> bool
val instance : t -> Instance.t
val constraints : t -> Constraints.t
val union : t -> t -> t
(** Keeps the order of the instances *)
val size : t -> int
(** The number of universes in the context *)
val names : t -> Names.Name.t array
(** Return the user names of the universes *)
val refine_names : Names.Name.t array -> t -> t
(** Use names to name the possibly yet unnamed universes *)
end
module AbstractContext :
sig
type t
(** An abstract context serves to quantify over a graph of universes
represented using de Bruijn indices, as in:
u0, ..., u(n-1), Var i < Var j, .., Var k <= Var l |- term(Var 0 .. Var (n-1))
\-------------/ \-------------------------------/ \---------------------/
names for constraints expressed on de Bruijn judgement in abstract
printing representation of the n univ vars context expected to
use de Bruijn indices
*)
val make : Names.Name.t array -> Constraints.t -> t
(** Build an abstract context. Constraints may be between universe
variables. *)
val repr : t -> UContext.t
(** [repr ctx] is [(Var(0), ... Var(n-1) |= cstr] where [n] is the length of
the context and [cstr] the abstracted Constraints.t. *)
val empty : t
val is_empty : t -> bool
val size : t -> int
val union : t -> t -> t
(** The constraints are expected to be relative to the concatenated set of universes *)
val instantiate : Instance.t -> t -> Constraints.t
(** Generate the set of instantiated Constraints.t **)
val names : t -> Names.Name.t array
(** Return the names of the bound universe variables *)
end
type 'a univ_abstracted = {
univ_abstracted_value : 'a;
univ_abstracted_binder : AbstractContext.t;
}
(** A value with bound universe levels. *)
val map_univ_abstracted : ('a -> 'b) -> 'a univ_abstracted -> 'b univ_abstracted
(** Universe contexts (as sets) *)
(** A set of universes with universe Constraints.t.
We linearize the set to a list after typechecking.
Beware, representation could change.
*)
module ContextSet :
sig
type t = Level.Set.t constrained
val empty : t
val is_empty : t -> bool
val singleton : Level.t -> t
val of_instance : Instance.t -> t
val of_set : Level.Set.t -> t
val equal : t -> t -> bool
val union : t -> t -> t
val append : t -> t -> t
(** Variant of {!union} which is more efficient when the left argument is
much smaller than the right one. *)
val diff : t -> t -> t
val add_universe : Level.t -> t -> t
val add_constraints : Constraints.t -> t -> t
val add_instance : Instance.t -> t -> t
val sort_levels : Level.t array -> Level.t array
(** Arbitrary choice of linear order of the variables *)
val to_context : (Instance.t -> Names.Name.t array) -> t -> UContext.t
(** Build a vector of universe levels assuming a function generating names *)
val of_context : UContext.t -> t
val constraints : t -> Constraints.t
val levels : t -> Level.Set.t
val size : t -> int
(** The number of universes in the context *)
end
(** A value in a universe context (resp. context set). *)
type 'a in_universe_context = 'a * UContext.t
type 'a in_universe_context_set = 'a * ContextSet.t
val extend_in_context_set : 'a in_universe_context_set -> ContextSet.t ->
'a in_universe_context_set
(** {6 Substitution} *)
type universe_level_subst = Level.t Level.Map.t
val empty_level_subst : universe_level_subst
val is_empty_level_subst : universe_level_subst -> bool
(** Substitution of universes. *)
val subst_univs_level_level : universe_level_subst -> Level.t -> Level.t
val subst_univs_level_universe : universe_level_subst -> Universe.t -> Universe.t
val subst_univs_level_constraints : universe_level_subst -> Constraints.t -> Constraints.t
val subst_univs_level_abstract_universe_context :
universe_level_subst -> AbstractContext.t -> AbstractContext.t
val subst_univs_level_instance : universe_level_subst -> Instance.t -> Instance.t
(** Level to universe substitutions. *)
(** Substitution of instances *)
val subst_instance_instance : Instance.t -> Instance.t -> Instance.t
val subst_instance_universe : Instance.t -> Universe.t -> Universe.t
val make_instance_subst : Instance.t -> universe_level_subst
(** Creates [u(0) ↦ 0; ...; u(n-1) ↦ n - 1] out of [u(0); ...; u(n - 1)] *)
val abstract_universes : UContext.t -> Instance.t * AbstractContext.t
(** TODO: move universe abstraction out of the kernel *)
val make_abstract_instance : AbstractContext.t -> Instance.t
(** [compact_univ u] remaps local variables in [u] such that their indices become
consecutive. It returns the new universe and the mapping.
Example: compact_univ [(Var 0, i); (Prop, 0); (Var 2; j))] =
[(Var 0,i); (Prop, 0); (Var 1; j)], [0; 2]
*)
val compact_univ : Universe.t -> Universe.t * int list
(** {6 Pretty-printing of universes. } *)
val pr_constraint_type : constraint_type -> Pp.t
val pr_constraints : (Level.t -> Pp.t) -> Constraints.t -> Pp.t
val pr_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array ->
UContext.t -> Pp.t
val pr_abstract_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array ->
AbstractContext.t -> Pp.t
val pr_universe_context_set : (Level.t -> Pp.t) -> ContextSet.t -> Pp.t
val pr_universe_level_subst : universe_level_subst -> Pp.t
(** {6 Hash-consing } *)
val hcons_univ : Universe.t -> Universe.t
val hcons_constraints : Constraints.t -> Constraints.t
val hcons_universe_set : Level.Set.t -> Level.Set.t
val hcons_universe_context : UContext.t -> UContext.t
val hcons_abstract_universe_context : AbstractContext.t -> AbstractContext.t
val hcons_universe_context_set : ContextSet.t -> ContextSet.t
|