1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open EConstr
open Vars
open Tacmach
open Tactics
open Tacticals
open Proofview.Notations
open Termops
open Formula
open Sequent
module NamedDecl = Context.Named.Declaration
type tactic = unit Proofview.tactic
type seqtac= (Sequent.t -> tactic) -> Sequent.t -> tactic
type lseqtac= GlobRef.t -> seqtac
type 'a with_backtracking = tactic -> 'a
let wrap n b continue seq =
Proofview.Goal.enter begin fun gls ->
Control.check_for_interrupt ();
let nc = Proofview.Goal.hyps gls in
let env=pf_env gls in
let sigma = project gls in
let rec aux i nc ctx=
if i<=0 then seq else
match nc with
[]->anomaly (Pp.str "Not the expected number of hyps.")
| nd::q->
let id = NamedDecl.get_id nd in
if occur_var env sigma id (pf_concl gls) ||
List.exists (occur_var_in_decl env sigma id) ctx then
(aux (i-1) q (nd::ctx))
else
add_formula env sigma Hyp (GlobRef.VarRef id) (NamedDecl.get_type nd) (aux (i-1) q (nd::ctx)) in
let seq1=aux n nc [] in
let seq2=if b then
add_formula env sigma Concl dummy_id (pf_concl gls) seq1 else seq1 in
continue seq2
end
let clear_global=function
| GlobRef.VarRef id-> clear [id]
| _->tclIDTAC
(* connection rules *)
let axiom_tac t seq =
Proofview.Goal.enter begin fun gl ->
try
pf_constr_of_global (find_left (project gl) t seq) >>= fun c ->
exact_no_check c
with Not_found -> tclFAIL (Pp.str "No axiom link")
end
let ll_atom_tac a backtrack id continue seq =
let open EConstr in
tclIFTHENELSE
(tclTHENLIST
[(Proofview.tclEVARMAP >>= fun sigma ->
let gr =
try Proofview.tclUNIT (find_left sigma a seq)
with Not_found -> tclFAIL (Pp.str "No link")
in
gr >>= fun gr ->
pf_constr_of_global gr >>= fun left ->
pf_constr_of_global id >>= fun id ->
generalize [(mkApp(id, [|left|]))]);
clear_global id;
intro])
(wrap 1 false continue seq) backtrack
(* right connectives rules *)
let and_tac backtrack continue seq=
tclIFTHENELSE simplest_split (wrap 0 true continue seq) backtrack
let or_tac backtrack continue seq=
tclORELSE
(any_constructor false (Some (tclCOMPLETE (wrap 0 true continue seq))))
backtrack
let arrow_tac backtrack continue seq=
tclIFTHENELSE intro (wrap 1 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 1 true continue seq)))
backtrack)
(* left connectives rules *)
let left_and_tac ind backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let n=(construct_nhyps (pf_env gl) ind).(0) in
tclIFTHENELSE
(tclTHENLIST
[(pf_constr_of_global id >>= simplest_elim);
clear_global id;
tclDO n intro])
(wrap n false continue seq)
backtrack
end
let left_or_tac ind backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let v=construct_nhyps (pf_env gl) ind in
let f n=
tclTHENLIST
[clear_global id;
tclDO n intro;
wrap n false continue seq] in
tclIFTHENSVELSE
(pf_constr_of_global id >>= simplest_elim)
(Array.map f v)
backtrack
end
let left_false_tac id=
Tacticals.pf_constr_of_global id >>= simplest_elim
(* left arrow connective rules *)
(* We use this function for false, and, or, exists *)
let ll_ind_tac (ind,u as indu) largs backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let rcs=ind_hyps (pf_env gl) (project gl) 0 indu largs in
let vargs=Array.of_list largs in
(* construire le terme H->B, le generaliser etc *)
let myterm idc i=
let rc=rcs.(i) in
let p=List.length rc in
let u = EInstance.make u in
let cstr=mkApp ((mkConstructU ((ind,(i+1)),u)),vargs) in
let vars=Array.init p (fun j->mkRel (p-j)) in
let capply=mkApp ((lift p cstr),vars) in
let head=mkApp ((lift p idc),[|capply|]) in
EConstr.it_mkLambda_or_LetIn head rc in
let lp=Array.length rcs in
let newhyps idc =List.init lp (myterm idc) in
tclIFTHENELSE
(tclTHENLIST
[(pf_constr_of_global id >>= fun idc -> generalize (newhyps idc));
clear_global id;
tclDO lp intro])
(wrap lp false continue seq) backtrack
end
let ll_arrow_tac a b c backtrack id continue seq=
let open EConstr in
let open Vars in
let cc=mkProd(Context.make_annot Anonymous Sorts.Relevant,a,(lift 1 b)) in
let d idc = mkLambda (Context.make_annot Anonymous Sorts.Relevant,b,
mkApp (idc, [|mkLambda (Context.make_annot Anonymous Sorts.Relevant,(lift 1 a),(mkRel 2))|])) in
tclORELSE
(tclTHENS (cut c)
[tclTHENLIST
[introf;
clear_global id;
wrap 1 false continue seq];
tclTHENS (cut cc)
[(pf_constr_of_global id >>= fun c -> exact_no_check c);
tclTHENLIST
[(pf_constr_of_global id >>= fun idc -> generalize [d idc]);
clear_global id;
introf;
introf;
tclCOMPLETE (wrap 2 true continue seq)]]])
backtrack
(* quantifier rules (easy side) *)
let forall_tac backtrack continue seq=
tclORELSE
(tclIFTHENELSE intro (wrap 0 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 0 true continue seq)))
backtrack))
(if !qflag then
tclFAIL (Pp.str "reversible in 1st order mode")
else
backtrack)
let left_exists_tac ind backtrack id continue seq =
Proofview.Goal.enter begin fun gl ->
let n=(construct_nhyps (pf_env gl) ind).(0) in
tclIFTHENELSE
(Tacticals.pf_constr_of_global id >>= simplest_elim)
(tclTHENLIST [clear_global id;
tclDO n intro;
(wrap (n-1) false continue seq)])
backtrack
end
let ll_forall_tac prod backtrack id continue seq=
tclORELSE
(tclTHENS (cut prod)
[tclTHENLIST
[intro;
(pf_constr_of_global id >>= fun idc ->
Proofview.Goal.enter begin fun gls->
let open EConstr in
let id0 = List.nth (pf_ids_of_hyps gls) 0 in
let term=mkApp(idc,[|mkVar(id0)|]) in
tclTHEN (generalize [term]) (clear [id0])
end);
clear_global id;
intro;
tclCOMPLETE (wrap 1 false continue (deepen seq))];
tclCOMPLETE (wrap 0 true continue (deepen seq))])
backtrack
(* rules for instantiation with unification moved to instances.ml *)
|