1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Genredexpr
open Tac2expr
open Tac2ffi
open Tac2types
open Tac2extffi
open Proofview.Notations
module Value = Tac2ffi
(** Make a representation with a dummy from function *)
let make_to_repr f = Tac2ffi.make_repr (fun _ -> assert false) f
let return x = Proofview.tclUNIT x
let v_unit = Value.of_unit ()
let thaw r f = Tac2ffi.app_fun1 f unit r ()
let uthaw r f = Tac2ffi.app_fun1 (to_fun1 unit r f) unit r ()
let thunk r = fun1 unit r
let to_name c = match Value.to_option Value.to_ident c with
| None -> Anonymous
| Some id -> Name id
let name = make_to_repr to_name
let to_occurrences = function
| ValInt 0 -> AllOccurrences
| ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list Value.to_int vl)
| ValInt 1 -> NoOccurrences
| ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list Value.to_int vl)
| _ -> assert false
let occurrences = make_to_repr to_occurrences
let to_hyp_location_flag v = match Value.to_int v with
| 0 -> InHyp
| 1 -> InHypTypeOnly
| 2 -> InHypValueOnly
| _ -> assert false
let to_clause v = match Value.to_tuple v with
| [| hyps; concl |] ->
let cast v = match Value.to_tuple v with
| [| hyp; occ; flag |] ->
(Value.to_ident hyp, to_occurrences occ, to_hyp_location_flag flag)
| _ -> assert false
in
let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in
{ onhyps = hyps; concl_occs = to_occurrences concl; }
| _ -> assert false
let clause = make_to_repr to_clause
let to_red_flag v = match Value.to_tuple v with
| [| beta; iota; fix; cofix; zeta; delta; const |] ->
{
rBeta = Value.to_bool beta;
rMatch = Value.to_bool iota;
rFix = Value.to_bool fix;
rCofix = Value.to_bool cofix;
rZeta = Value.to_bool zeta;
rDelta = Value.to_bool delta;
rConst = Value.to_list Value.to_reference const;
}
| _ -> assert false
let red_flags = make_to_repr to_red_flag
let pattern_with_occs = pair pattern occurrences
let constr_with_occs = pair constr occurrences
let reference_with_occs = pair reference occurrences
let rec to_intro_pattern v = match Value.to_block v with
| (0, [| b |]) -> IntroForthcoming (Value.to_bool b)
| (1, [| pat |]) -> IntroNaming (to_intro_pattern_naming pat)
| (2, [| act |]) -> IntroAction (to_intro_pattern_action act)
| _ -> assert false
and to_intro_pattern_naming = function
| ValBlk (0, [| id |]) -> IntroIdentifier (Value.to_ident id)
| ValBlk (1, [| id |]) -> IntroFresh (Value.to_ident id)
| ValInt 0 -> IntroAnonymous
| _ -> assert false
and to_intro_pattern_action = function
| ValInt 0 -> IntroWildcard
| ValBlk (0, [| op |]) -> IntroOrAndPattern (to_or_and_intro_pattern op)
| ValBlk (1, [| inj |]) ->
let map ipat = to_intro_pattern ipat in
IntroInjection (Value.to_list map inj)
| ValBlk (2, [| c; ipat |]) ->
let c = Value.to_fun1 Value.unit Value.constr c in
IntroApplyOn (c, to_intro_pattern ipat)
| ValBlk (3, [| b |]) -> IntroRewrite (Value.to_bool b)
| _ -> assert false
and to_or_and_intro_pattern v = match Value.to_block v with
| (0, [| ill |]) ->
IntroOrPattern (Value.to_list to_intro_patterns ill)
| (1, [| il |]) ->
IntroAndPattern (to_intro_patterns il)
| _ -> assert false
and to_intro_patterns il =
Value.to_list to_intro_pattern il
let intro_pattern = make_to_repr to_intro_pattern
let intro_patterns = make_to_repr to_intro_patterns
let to_destruction_arg v = match Value.to_block v with
| (0, [| c |]) ->
let c = uthaw constr_with_bindings c in
ElimOnConstr c
| (1, [| id |]) -> ElimOnIdent (Value.to_ident id)
| (2, [| n |]) -> ElimOnAnonHyp (Value.to_int n)
| _ -> assert false
let destruction_arg = make_to_repr to_destruction_arg
let to_induction_clause v = match Value.to_tuple v with
| [| arg; eqn; as_; in_ |] ->
let arg = to_destruction_arg arg in
let eqn = Value.to_option to_intro_pattern_naming eqn in
let as_ = Value.to_option to_or_and_intro_pattern as_ in
let in_ = Value.to_option to_clause in_ in
(arg, eqn, as_, in_)
| _ ->
assert false
let induction_clause = make_to_repr to_induction_clause
let to_assertion v = match Value.to_block v with
| (0, [| ipat; t; tac |]) ->
let to_tac t = Value.to_fun1 Value.unit Value.unit t in
let ipat = Value.to_option to_intro_pattern ipat in
let t = Value.to_constr t in
let tac = Value.to_option to_tac tac in
AssertType (ipat, t, tac)
| (1, [| id; c |]) ->
AssertValue (Value.to_ident id, Value.to_constr c)
| _ -> assert false
let assertion = make_to_repr to_assertion
let to_multi = function
| ValBlk (0, [| n |]) -> Precisely (Value.to_int n)
| ValBlk (1, [| n |]) -> UpTo (Value.to_int n)
| ValInt 0 -> RepeatStar
| ValInt 1 -> RepeatPlus
| _ -> assert false
let to_rewriting v = match Value.to_tuple v with
| [| orient; repeat; c |] ->
let orient = Value.to_option Value.to_bool orient in
let repeat = to_multi repeat in
let c = uthaw constr_with_bindings c in
(orient, repeat, c)
| _ -> assert false
let rewriting = make_to_repr to_rewriting
let to_debug v = match Value.to_int v with
| 0 -> Hints.Off
| 1 -> Hints.Info
| 2 -> Hints.Debug
| _ -> assert false
let debug = make_to_repr to_debug
let to_strategy v = match Value.to_int v with
| 0 -> Class_tactics.Bfs
| 1 -> Class_tactics.Dfs
| _ -> assert false
let strategy = make_to_repr to_strategy
let to_inversion_kind v = match Value.to_int v with
| 0 -> Inv.SimpleInversion
| 1 -> Inv.FullInversion
| 2 -> Inv.FullInversionClear
| _ -> assert false
let inversion_kind = make_to_repr to_inversion_kind
let to_move_location = function
| ValInt 0 -> Logic.MoveFirst
| ValInt 1 -> Logic.MoveLast
| ValBlk (0, [|id|]) -> Logic.MoveAfter (Value.to_ident id)
| ValBlk (1, [|id|]) -> Logic.MoveBefore (Value.to_ident id)
| _ -> assert false
let move_location = make_to_repr to_move_location
let to_generalize_arg v = match Value.to_tuple v with
| [| c; occs; na |] ->
(Value.to_constr c, to_occurrences occs, to_name na)
| _ -> assert false
let generalize_arg = make_to_repr to_generalize_arg
(** Standard tactics sharing their implementation with Ltac1 *)
let pname s = { mltac_plugin = "coq-core.plugins.ltac2"; mltac_tactic = s }
let lift tac = tac <*> return v_unit
let define_prim0 name tac =
let tac _ = lift tac in
Tac2env.define_primitive (pname name) (mk_closure arity_one tac)
let define_prim1 name r0 f =
let tac x = lift (f (Value.repr_to r0 x)) in
Tac2env.define_primitive (pname name) (mk_closure arity_one tac)
let define_prim2 name r0 r1 f =
let tac x y = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y)) in
Tac2env.define_primitive (pname name) (mk_closure (arity_suc arity_one) tac)
let define_prim3 name r0 r1 r2 f =
let tac x y z = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z)) in
Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc arity_one)) tac)
let define_prim4 name r0 r1 r2 r3 f =
let tac x y z u = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z) (Value.repr_to r3 u)) in
Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc (arity_suc arity_one))) tac)
let define_prim5 name r0 r1 r2 r3 r4 f =
let tac x y z u v = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z) (Value.repr_to r3 u) (Value.repr_to r4 v)) in
Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc (arity_suc (arity_suc arity_one)))) tac)
(** Tactics from Tacexpr *)
let () = define_prim2 "tac_intros" bool intro_patterns begin fun ev ipat ->
Tac2tactics.intros_patterns ev ipat
end
let () = define_prim4 "tac_apply" bool bool (list (thunk constr_with_bindings)) (option (pair ident (option intro_pattern))) begin fun adv ev cb ipat ->
Tac2tactics.apply adv ev cb ipat
end
let () = define_prim3 "tac_elim" bool constr_with_bindings (option constr_with_bindings) begin fun ev c copt ->
Tac2tactics.elim ev c copt
end
let () = define_prim2 "tac_case" bool constr_with_bindings begin fun ev c ->
Tac2tactics.general_case_analysis ev c
end
let () = define_prim1 "tac_generalize" (list generalize_arg) begin fun cl ->
Tac2tactics.generalize cl
end
let () = define_prim1 "tac_assert" assertion begin fun ast ->
Tac2tactics.assert_ ast
end
let () = define_prim3 "tac_enough" constr (option (option (thunk unit))) (option intro_pattern) begin fun c tac ipat ->
let tac = Option.map (fun o -> Option.map (fun f -> thaw unit f) o) tac in
Tac2tactics.forward false tac ipat c
end
let () = define_prim2 "tac_pose" name constr begin fun na c ->
Tactics.letin_tac None na c None Locusops.nowhere
end
let () = define_prim3 "tac_set" bool (thunk (pair name constr)) clause begin fun ev p cl ->
Proofview.tclEVARMAP >>= fun sigma ->
thaw (pair name constr) p >>= fun (na, c) ->
Tac2tactics.letin_pat_tac ev None na (sigma, c) cl
end
let () = define_prim5 "tac_remember" bool name (thunk constr) (option intro_pattern) clause begin fun ev na c eqpat cl ->
let eqpat = Option.default (IntroNaming IntroAnonymous) eqpat in
match eqpat with
| IntroNaming eqpat ->
Proofview.tclEVARMAP >>= fun sigma ->
thaw constr c >>= fun c ->
Tac2tactics.letin_pat_tac ev (Some (true, eqpat)) na (sigma, c) cl
| _ ->
Tacticals.tclZEROMSG (Pp.str "Invalid pattern for remember")
end
let () = define_prim3 "tac_destruct" bool (list induction_clause) (option constr_with_bindings) begin fun ev ic using ->
Tac2tactics.induction_destruct false ev ic using
end
let () = define_prim3 "tac_induction" bool (list induction_clause) (option constr_with_bindings) begin fun ev ic using ->
Tac2tactics.induction_destruct true ev ic using
end
let () = define_prim1 "tac_red" clause begin fun cl ->
Tac2tactics.reduce (Red false) cl
end
let () = define_prim1 "tac_hnf" clause begin fun cl ->
Tac2tactics.reduce Hnf cl
end
let () = define_prim3 "tac_simpl" red_flags (option pattern_with_occs) clause begin fun flags where cl ->
Tac2tactics.simpl flags where cl
end
let () = define_prim2 "tac_cbv" red_flags clause begin fun flags cl ->
Tac2tactics.cbv flags cl
end
let () = define_prim2 "tac_cbn" red_flags clause begin fun flags cl ->
Tac2tactics.cbn flags cl
end
let () = define_prim2 "tac_lazy" red_flags clause begin fun flags cl ->
Tac2tactics.lazy_ flags cl
end
let () = define_prim2 "tac_unfold" (list reference_with_occs) clause begin fun refs cl ->
Tac2tactics.unfold refs cl
end
let () = define_prim2 "tac_fold" (list constr) clause begin fun args cl ->
Tac2tactics.reduce (Fold args) cl
end
let () = define_prim2 "tac_pattern" (list constr_with_occs) clause begin fun where cl ->
Tac2tactics.pattern where cl
end
let () = define_prim2 "tac_vm" (option pattern_with_occs) clause begin fun where cl ->
Tac2tactics.vm where cl
end
let () = define_prim2 "tac_native" (option pattern_with_occs) clause begin fun where cl ->
Tac2tactics.native where cl
end
(** Reduction functions *)
let lift tac = tac >>= fun c -> Proofview.tclUNIT (Value.of_constr c)
let define_red1 name r0 f =
let tac x = lift (f (Value.repr_to r0 x)) in
Tac2env.define_primitive (pname name) (mk_closure arity_one tac)
let define_red2 name r0 r1 f =
let tac x y = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y)) in
Tac2env.define_primitive (pname name) (mk_closure (arity_suc arity_one) tac)
let define_red3 name r0 r1 r2 f =
let tac x y z = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z)) in
Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc arity_one)) tac)
let () = define_red1 "eval_red" constr begin fun c ->
Tac2tactics.eval_red c
end
let () = define_red1 "eval_hnf" constr begin fun c ->
Tac2tactics.eval_hnf c
end
let () = define_red3 "eval_simpl" red_flags (option pattern_with_occs) constr begin fun flags where c ->
Tac2tactics.eval_simpl flags where c
end
let () = define_red2 "eval_cbv" red_flags constr begin fun flags c ->
Tac2tactics.eval_cbv flags c
end
let () = define_red2 "eval_cbn" red_flags constr begin fun flags c ->
Tac2tactics.eval_cbn flags c
end
let () = define_red2 "eval_lazy" red_flags constr begin fun flags c ->
Tac2tactics.eval_lazy flags c
end
let () = define_red2 "eval_unfold" (list reference_with_occs) constr begin fun refs c ->
Tac2tactics.eval_unfold refs c
end
let () = define_red2 "eval_fold" (list constr) constr begin fun args c ->
Tac2tactics.eval_fold args c
end
let () = define_red2 "eval_pattern" (list constr_with_occs) constr begin fun where c ->
Tac2tactics.eval_pattern where c
end
let () = define_red2 "eval_vm" (option pattern_with_occs) constr begin fun where c ->
Tac2tactics.eval_vm where c
end
let () = define_red2 "eval_native" (option pattern_with_occs) constr begin fun where c ->
Tac2tactics.eval_native where c
end
let () = define_prim3 "tac_change" (option pattern) (fun1 (array constr) constr) clause begin fun pat c cl ->
Tac2tactics.change pat c cl
end
let () = define_prim4 "tac_rewrite" bool (list rewriting) clause (option (thunk unit)) begin fun ev rw cl by ->
Tac2tactics.rewrite ev rw cl by
end
let () = define_prim4 "tac_inversion" inversion_kind destruction_arg (option intro_pattern) (option (list ident)) begin fun knd arg pat ids ->
Tac2tactics.inversion knd arg pat ids
end
(** Tactics from coretactics *)
let () = define_prim0 "tac_reflexivity" Tactics.intros_reflexivity
let () = define_prim2 "tac_move" ident move_location begin fun id mv ->
Tactics.move_hyp id mv
end
let () = define_prim2 "tac_intro" (option ident) (option move_location) begin fun id mv ->
let mv = Option.default Logic.MoveLast mv in
Tactics.intro_move id mv
end
(*
TACTIC EXTEND exact
[ "exact" casted_constr(c) ] -> [ Tactics.exact_no_check c ]
END
*)
let () = define_prim0 "tac_assumption" Tactics.assumption
let () = define_prim1 "tac_transitivity" constr begin fun c ->
Tactics.intros_transitivity (Some c)
end
let () = define_prim0 "tac_etransitivity" (Tactics.intros_transitivity None)
let () = define_prim1 "tac_cut" constr begin fun c ->
Tactics.cut c
end
let () = define_prim2 "tac_left" bool bindings begin fun ev bnd ->
Tac2tactics.left_with_bindings ev bnd
end
let () = define_prim2 "tac_right" bool bindings begin fun ev bnd ->
Tac2tactics.right_with_bindings ev bnd
end
let () = define_prim1 "tac_introsuntil" qhyp begin fun h ->
Tactics.intros_until h
end
let () = define_prim1 "tac_exactnocheck" constr begin fun c ->
Tactics.exact_no_check c
end
let () = define_prim1 "tac_vmcastnocheck" constr begin fun c ->
Tactics.vm_cast_no_check c
end
let () = define_prim1 "tac_nativecastnocheck" constr begin fun c ->
Tactics.native_cast_no_check c
end
let () = define_prim1 "tac_constructor" bool begin fun ev ->
Tactics.any_constructor ev None
end
let () = define_prim3 "tac_constructorn" bool int bindings begin fun ev n bnd ->
Tac2tactics.constructor_tac ev None n bnd
end
let () = define_prim2 "tac_specialize" constr_with_bindings (option intro_pattern) begin fun c ipat ->
Tac2tactics.specialize c ipat
end
let () = define_prim1 "tac_symmetry" clause begin fun cl ->
Tac2tactics.symmetry cl
end
let () = define_prim2 "tac_split" bool bindings begin fun ev bnd ->
Tac2tactics.split_with_bindings ev bnd
end
let () = define_prim1 "tac_rename" (list (pair ident ident)) begin fun ids ->
Tactics.rename_hyp ids
end
let () = define_prim1 "tac_revert" (list ident) begin fun ids ->
Tactics.revert ids
end
let () = define_prim0 "tac_admit" Proofview.give_up
let () = define_prim2 "tac_fix" ident int begin fun ident n ->
Tactics.fix ident n
end
let () = define_prim1 "tac_cofix" ident begin fun ident ->
Tactics.cofix ident
end
let () = define_prim1 "tac_clear" (list ident) begin fun ids ->
Tactics.clear ids
end
let () = define_prim1 "tac_keep" (list ident) begin fun ids ->
Tactics.keep ids
end
let () = define_prim1 "tac_clearbody" (list ident) begin fun ids ->
Tactics.clear_body ids
end
(** Tactics from extratactics *)
let () = define_prim2 "tac_discriminate" bool (option destruction_arg) begin fun ev arg ->
Tac2tactics.discriminate ev arg
end
let () = define_prim3 "tac_injection" bool (option intro_patterns) (option destruction_arg) begin fun ev ipat arg ->
Tac2tactics.injection ev ipat arg
end
let () = define_prim1 "tac_absurd" constr begin fun c ->
Contradiction.absurd c
end
let () = define_prim1 "tac_contradiction" (option constr_with_bindings) begin fun c ->
Tac2tactics.contradiction c
end
let () = define_prim4 "tac_autorewrite" bool (option (thunk unit)) (list ident) clause begin fun all by ids cl ->
Tac2tactics.autorewrite ~all by ids cl
end
let () = define_prim1 "tac_subst" (list ident) begin fun ids ->
Equality.subst ids
end
let () = define_prim0 "tac_substall" (return () >>= fun () -> Equality.subst_all ())
(** Auto *)
let () = define_prim3 "tac_trivial" debug (list (thunk constr)) (option (list ident)) begin fun dbg lems dbs ->
Tac2tactics.trivial dbg lems dbs
end
let () = define_prim4 "tac_eauto" debug (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n lems dbs ->
Tac2tactics.eauto dbg n lems dbs
end
let () = define_prim4 "tac_auto" debug (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n lems dbs ->
Tac2tactics.auto dbg n lems dbs
end
let () = define_prim3 "tac_typeclasses_eauto" (option strategy) (option int) (option (list ident)) begin fun str n dbs ->
Tac2tactics.typeclasses_eauto str n dbs
end
let () = define_prim2 "tac_unify" constr constr begin fun x y ->
Tac2tactics.unify x y
end
|