1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
open EConstr
open Univ
open Evd
open Environ
(** Reduction Functions. *)
exception Elimconst
val debug_RAKAM : CDebug.t
module CredNative : Primred.RedNative with
type elem = EConstr.t and type args = EConstr.t array and type evd = Evd.evar_map
and type uinstance = EInstance.t
(** Machinery to customize the behavior of the reduction *)
module ReductionBehaviour : sig
type t = NeverUnfold | UnfoldWhen of when_flags | UnfoldWhenNoMatch of when_flags
and when_flags = { recargs : int list ; nargs : int option }
val set : local:bool -> GlobRef.t -> t -> unit
val get : GlobRef.t -> t option
val print : GlobRef.t -> Pp.t
end
(** {6 Support for reduction effects } *)
type effect_name = string
(* [declare_reduction_effect name f] declares [f] under key [name];
[name] must be a unique in "world". *)
val declare_reduction_effect : effect_name ->
(Environ.env -> Evd.evar_map -> Constr.constr -> unit) -> unit
(* [set_reduction_effect cst name] declares effect [name] to be called when [cst] is found *)
val set_reduction_effect : Constant.t -> effect_name -> unit
(* [effect_hook env sigma key term] apply effect associated to [key] on [term] *)
val reduction_effect_hook : Environ.env -> Evd.evar_map -> Constant.t ->
Constr.constr Lazy.t -> unit
module Stack : sig
type app_node
val pr_app_node : (EConstr.t -> Pp.t) -> app_node -> Pp.t
type case_stk
type member =
| App of app_node
| Case of case_stk
| Proj of Projection.t
| Fix of EConstr.fixpoint * t
| Primitive of CPrimitives.t * (Constant.t * EInstance.t) * t * CPrimitives.args_red
and t = member list
val pr : (EConstr.t -> Pp.t) -> t -> Pp.t
val empty : t
val is_empty : t -> bool
val compare_shape : t -> t -> bool
exception IncompatibleFold2
(** [fold2 f x sk1 sk2] folds [f] on any pair of term in [(sk1,sk2)].
@return the result and the lifts to apply on the terms
@raise IncompatibleFold2 when [sk1] and [sk2] have incompatible shapes *)
val fold2 : ('a -> constr -> constr -> 'a) -> 'a -> t -> t -> 'a
(** [append_app args sk] pushes array of arguments [args] on [sk] *)
val append_app : EConstr.t array -> t -> t
(** [append_app_list args sk] pushes list of arguments [args] on [sk] *)
val append_app_list : EConstr.t list -> t -> t
(** if [strip_app sk] = [(sk1,sk2)], then [sk = sk1 @ sk2] with
[sk1] purely applicative and [sk2] does not start with an argument *)
val strip_app : t -> t * t
(** @return (the nth first elements, the (n+1)th element, the remaining stack)
if there enough of those *)
val strip_n_app : int -> t -> (t * EConstr.t * t) option
(** [decomp sk] extracts the first argument of reversed stack [sk] is there is some *)
val decomp_rev : t -> (EConstr.t * t) option
(** [not_purely_applicative sk] *)
val not_purely_applicative : t -> bool
(** [list_of_app_stack sk] either returns [Some sk] turned into a list of
arguments if [sk] is purely applicative and [None] otherwise *)
val list_of_app_stack : t -> constr list option
(** [args_size sk] returns the number of arguments available at the
head of [sk] *)
val args_size : t -> int
(** [zip sigma t sk] *)
val zip : evar_map -> constr * t -> constr
val expand_case : env -> evar_map -> case_stk ->
case_info * EInstance.t * constr array * (rel_context * constr) * (rel_context * constr) array
end
(************************************************************************)
type reduction_function = env -> evar_map -> constr -> constr
type e_reduction_function = env -> evar_map -> constr -> evar_map * constr
type stack_reduction_function =
env -> evar_map -> constr -> constr * constr list
(** {6 Generic Optimized Reduction Function using Closures } *)
val clos_norm_flags : CClosure.RedFlags.reds -> reduction_function
val clos_whd_flags : CClosure.RedFlags.reds -> reduction_function
(** Same as [(strong whd_beta[delta][iota])], but much faster on big terms *)
val nf_beta : reduction_function
val nf_betaiota : reduction_function
val nf_betaiotazeta : reduction_function
val nf_zeta : reduction_function
val nf_all : reduction_function
val nf_evar : evar_map -> constr -> constr
(** Lazy strategy, weak head reduction *)
val whd_evar : evar_map -> constr -> constr
val whd_nored : reduction_function
val whd_beta : reduction_function
val whd_betaiota : reduction_function
val whd_betaiotazeta : reduction_function
val whd_all : reduction_function
val whd_allnolet : reduction_function
val whd_betalet : reduction_function
(** Removes cast and put into applicative form *)
val whd_nored_stack : stack_reduction_function
val whd_beta_stack : stack_reduction_function
val whd_betaiota_stack : stack_reduction_function
val whd_betaiotazeta_stack : stack_reduction_function
val whd_all_stack : stack_reduction_function
val whd_allnolet_stack : stack_reduction_function
val whd_betalet_stack : stack_reduction_function
(** {6 Head normal forms } *)
val whd_const : Constant.t -> reduction_function
val whd_delta_stack : stack_reduction_function
val whd_delta : reduction_function
val whd_betadeltazeta_stack : stack_reduction_function
val whd_betadeltazeta : reduction_function
val whd_zeta_stack : stack_reduction_function
val whd_zeta : reduction_function
val shrink_eta : evar_map -> constr -> constr
(** Various reduction functions *)
val beta_applist : evar_map -> constr * constr list -> constr
val hnf_prod_app : env -> evar_map -> constr -> constr -> constr
val hnf_prod_appvect : env -> evar_map -> constr -> constr array -> constr
val hnf_prod_applist : env -> evar_map -> constr -> constr list -> constr
val hnf_lam_app : env -> evar_map -> constr -> constr -> constr
val hnf_lam_appvect : env -> evar_map -> constr -> constr array -> constr
val hnf_lam_applist : env -> evar_map -> constr -> constr list -> constr
val splay_prod : env -> evar_map -> constr -> (Name.t Context.binder_annot * constr) list * constr
val splay_lam : env -> evar_map -> constr -> (Name.t Context.binder_annot * constr) list * constr
val splay_prod_assum : env -> evar_map -> constr -> rel_context * constr
val splay_arity : env -> evar_map -> constr -> (Name.t Context.binder_annot * constr) list * ESorts.t
(** Raises [Reduction.NotArity] *)
val sort_of_arity : env -> evar_map -> constr -> ESorts.t
(** Raises [Reduction.NotArity] *)
val splay_prod_n : env -> evar_map -> int -> constr -> rel_context * constr
(** Raises [Invalid_argument] *)
val splay_lam_n : env -> evar_map -> int -> constr -> rel_context * constr
(** Raises [Invalid_argument] *)
val reducible_mind_case : evar_map -> constr -> bool
val find_conclusion : env -> evar_map -> constr -> (constr, constr, ESorts.t, EInstance.t) kind_of_term
val is_arity : env -> evar_map -> constr -> bool
val is_sort : env -> evar_map -> types -> bool
val contract_fix : evar_map -> fixpoint -> constr
val contract_cofix : evar_map -> cofixpoint -> constr
(** {6 Querying the kernel conversion oracle: opaque/transparent constants } *)
val is_transparent : Environ.env -> Constant.t tableKey -> bool
(** {6 Conversion Functions (uses closures, lazy strategy) } *)
type conversion_test = Constraints.t -> Constraints.t
val pb_is_equal : conv_pb -> bool
val pb_equal : conv_pb -> conv_pb
val is_conv : ?reds:TransparentState.t -> env -> evar_map -> constr -> constr -> bool
val is_conv_leq : ?reds:TransparentState.t -> env -> evar_map -> constr -> constr -> bool
val is_fconv : ?reds:TransparentState.t -> conv_pb -> env -> evar_map -> constr -> constr -> bool
(** [check_conv] Checks universe constraints only.
pb defaults to CUMUL and ts to a full transparent state.
*)
val check_conv : ?pb:conv_pb -> ?ts:TransparentState.t -> env -> evar_map -> constr -> constr -> bool
(** [infer_conv] Adds necessary universe constraints to the evar map.
pb defaults to CUMUL and ts to a full transparent state.
@raise UniverseInconsistency iff catch_incon is set to false,
otherwise returns false in that case.
*)
val infer_conv : ?catch_incon:bool -> ?pb:conv_pb -> ?ts:TransparentState.t ->
env -> evar_map -> constr -> constr -> evar_map option
val infer_conv_ustate : ?catch_incon:bool -> ?pb:conv_pb -> ?ts:TransparentState.t ->
env -> evar_map -> constr -> constr -> UnivProblem.Set.t option
(** Conversion with inference of universe constraints *)
val vm_infer_conv : ?pb:conv_pb -> env -> evar_map -> constr -> constr ->
evar_map option
val native_infer_conv : ?pb:conv_pb -> env -> evar_map -> constr -> constr ->
evar_map option
(** [infer_conv_gen] behaves like [infer_conv] but is parametrized by a
conversion function. Used to pretype vm and native casts. *)
val infer_conv_gen : (conv_pb -> l2r:bool -> evar_map -> TransparentState.t ->
(Constr.constr, evar_map) Reduction.generic_conversion_function) ->
?catch_incon:bool -> ?pb:conv_pb -> ?ts:TransparentState.t -> env ->
evar_map -> constr -> constr -> evar_map option
(** {6 Heuristic for Conversion with Evar } *)
type state = constr * Stack.t
type state_reduction_function =
env -> evar_map -> state -> state
val pr_state : env -> evar_map -> state -> Pp.t
val whd_nored_state : state_reduction_function
val whd_betaiota_deltazeta_for_iota_state :
TransparentState.t -> state_reduction_function
val is_head_evar : env -> evar_map -> constr -> bool
(** {6 Meta-related reduction functions } *)
type meta_instance_subst
val create_meta_instance_subst : Evd.evar_map -> meta_instance_subst
val meta_instance : env -> meta_instance_subst -> constr freelisted -> constr
val nf_meta : env -> evar_map -> constr -> constr
exception AnomalyInConversion of exn
(* inferred_universes just gathers the constraints. *)
val inferred_universes : (UGraph.t * Univ.Constraints.t) Reduction.universe_compare
|