1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Constr
open Context
open EConstr
open Vars
open Reduction
open Tacticals
open Tactics
open Pretype_errors
open Evd
open Tactypes
open Locus
open Locusops
open Elimschemes
open Environ
open Termops
open EConstr
open Libnames
open Proofview.Notations
open Context.Named.Declaration
module NamedDecl = Context.Named.Declaration
(* module RelDecl = Context.Rel.Declaration *)
module TC = Typeclasses
(** Typeclass-based generalized rewriting. *)
(** Constants used by the tactic. *)
let classes_dirpath =
Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"])
let init_relation_classes () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else Coqlib.check_required_library ["Coq";"Classes";"RelationClasses"]
let init_setoid () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]
let find_reference dir s =
Coqlib.find_reference "generalized rewriting" dir s
[@@warning "-3"]
let lazy_find_reference dir s =
let gr = lazy (find_reference dir s) in
fun () -> Lazy.force gr
type evars = evar_map * Evar.Set.t (* goal evars, constraint evars *)
let find_global dir s =
let gr = lazy (find_reference dir s) in
fun env (evd,cstrs) ->
let (evd, c) = Evd.fresh_global env evd (Lazy.force gr) in
(evd, cstrs), c
(** Utility for dealing with polymorphic applications *)
(** Global constants. *)
let coq_eq_ref () = Coqlib.lib_ref "core.eq.type"
let coq_eq = find_global ["Coq"; "Init"; "Logic"] "eq"
let coq_f_equal = find_global ["Coq"; "Init"; "Logic"] "f_equal"
let coq_all = find_global ["Coq"; "Init"; "Logic"] "all"
let impl = find_global ["Coq"; "Program"; "Basics"] "impl"
(** Bookkeeping which evars are constraints so that we can
remove them at the end of the tactic. *)
let goalevars evars = fst evars
let cstrevars evars = snd evars
let new_cstr_evar (evd,cstrs) env t =
(* We handle the typeclass resolution of constraints ourselves *)
let (evd', t) = Evarutil.new_evar env evd ~typeclass_candidate:false t in
let ev, _ = destEvar evd' t in
(evd', Evar.Set.add ev cstrs), t
(** Building or looking up instances. *)
let extends_undefined evars evars' =
let f ev evi found = found || not (Evd.mem evars ev)
in fold_undefined f evars' false
let app_poly_check env evars f args =
let (evars, cstrs), fc = f env evars in
let evars, t = Typing.solve_evars env evars (mkApp (fc, args)) in
(evars, cstrs), t
let app_poly_nocheck env evars f args =
let evars, fc = f env evars in
evars, mkApp (fc, args)
let app_poly_sort b =
if b then app_poly_nocheck
else app_poly_check
let find_class_proof proof_type proof_method env evars carrier relation =
try
let evars, goal = app_poly_check env evars proof_type [| carrier ; relation |] in
let evars', c = TC.resolve_one_typeclass env (goalevars evars) goal in
if extends_undefined (goalevars evars) evars' then raise Not_found
else app_poly_check env (evars',cstrevars evars) proof_method [| carrier; relation; c |]
with e when CErrors.noncritical e -> raise Not_found
let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') =
let equal x y = Constr.equal (EConstr.Unsafe.to_constr x) (EConstr.Unsafe.to_constr y) in
pb == pb' || (ty == ty' && equal x x' && equal y y')
let problem_inclusion x y =
List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x
let evd_convertible env evd x y =
try
(* Unfortunately, the_conv_x might say they are unifiable even if some
unsolvable constraints remain, so we check that this unification
does not introduce any new problem. *)
let _, pbs = Evd.extract_all_conv_pbs evd in
let evd' = Evarconv.unify_delay env evd x y in
let _, pbs' = Evd.extract_all_conv_pbs evd' in
if evd' == evd || problem_inclusion pbs' pbs then Some evd'
else None
with e when CErrors.noncritical e -> None
type hypinfo = {
prf : constr;
car : constr;
rel : constr;
sort : bool; (* true = Prop; false = Type *)
c1 : constr;
c2 : constr;
holes : Clenv.hole list;
}
let error_no_relation () = user_err Pp.(str "Cannot find a relation to rewrite.")
let rec decompose_app_rel env evd t =
(* Head normalize for compatibility with the old meta mechanism *)
let t = Reductionops.whd_betaiota env evd t in
match EConstr.kind evd t with
| App (f, [||]) -> assert false
| App (f, [|arg|]) ->
(* This treats the special case `g (R x y)`, turning it into
the relation `(fun x y => g (R x y))`. Useful when g is negation in particular. *)
let (f', argl, argr) = decompose_app_rel env evd arg in
let ty = Retyping.get_type_of env evd argl in
let ty' = Retyping.get_type_of env evd argr in
let r = Retyping.relevance_of_type env evd ty in
let r' = Retyping.relevance_of_type env evd ty' in
let f'' = mkLambda (make_annot (Name Namegen.default_dependent_ident) r, ty,
mkLambda (make_annot (Name (Id.of_string "y")) r', lift 1 ty',
mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |])))
in (f'', argl, argr)
| App (f, args) ->
let len = Array.length args in
let fargs = Array.sub args 0 (Array.length args - 2) in
let rel = mkApp (f, fargs) in
rel, args.(len - 2), args.(len - 1)
| _ -> error_no_relation ()
let decompose_app_rel env evd t =
let (rel, t1, t2) = decompose_app_rel env evd t in
let ty = try Retyping.get_type_of ~lax:true env evd rel with Retyping.RetypeError _ -> error_no_relation () in
if not (Reductionops.is_arity env evd ty) then None else
match Reductionops.splay_arity env evd ty with
| [_, ty2; _, ty1], concl ->
if noccurn evd 1 ty2 then
Some (rel, ty1, subst1 mkProp ty2, concl, t1, t2)
else None
| _ -> assert false
let decompose_app_rel_error env evd t =
match decompose_app_rel env evd t with
| Some e -> e
| None -> error_no_relation ()
let decompose_applied_relation env sigma (c,l) =
let open Context.Rel.Declaration in
let ctype = Retyping.get_type_of env sigma c in
let find_rel ty =
let sigma, cl = Clenv.make_evar_clause env sigma ty in
let sigma = Clenv.solve_evar_clause env sigma true cl l in
let { Clenv.cl_holes = holes; Clenv.cl_concl = t } = cl in
match decompose_app_rel env sigma t with
| None -> None
| Some (equiv, ty1, ty2, concl, c1, c2) ->
match evd_convertible env sigma ty1 ty2 with
| None -> None
| Some sigma ->
let args = Array.map_of_list (fun h -> h.Clenv.hole_evar) holes in
let value = mkApp (c, args) in
Some (sigma, { prf=value;
car=ty1; rel = equiv; sort = Sorts.is_prop (ESorts.kind sigma concl);
c1=c1; c2=c2; holes })
in
match find_rel ctype with
| Some c -> c
| None ->
let ctx,t' = Reductionops.splay_prod env sigma ctype in (* Search for underlying eq *)
let t' = it_mkProd_or_LetIn t' (List.map (fun (n,t) -> LocalAssum (n, t)) ctx) in
match find_rel t' with
| Some c -> c
| None -> user_err Pp.(str "Cannot find an homogeneous relation to rewrite.")
(** Utility functions *)
module GlobalBindings (M : sig
val relation_classes : string list
val morphisms : string list
val relation : string list * string
val app_poly : env -> evars -> (env -> evars -> evars * constr) -> constr array -> evars * constr
val arrow : env -> evars -> evars * constr
end) = struct
open M
open Context.Rel.Declaration
let relation : env -> evars -> evars * constr = find_global (fst relation) (snd relation)
let reflexive_type = find_global relation_classes "Reflexive"
let reflexive_proof = find_global relation_classes "reflexivity"
let symmetric_type = find_global relation_classes "Symmetric"
let symmetric_proof = find_global relation_classes "symmetry"
let transitive_type = find_global relation_classes "Transitive"
let transitive_proof = find_global relation_classes "transitivity"
let forall_relation = find_global morphisms "forall_relation"
let pointwise_relation = find_global morphisms "pointwise_relation"
let forall_relation_ref = lazy_find_reference morphisms "forall_relation"
let pointwise_relation_ref = lazy_find_reference morphisms "pointwise_relation"
let respectful = find_global morphisms "respectful"
let default_relation = find_global ["Coq"; "Classes"; "SetoidTactics"] "DefaultRelation"
let coq_forall = find_global morphisms "forall_def"
let subrelation = find_global relation_classes "subrelation"
let do_subrelation = find_global morphisms "do_subrelation"
let apply_subrelation = find_global morphisms "apply_subrelation"
let rewrite_relation_class = find_global relation_classes "RewriteRelation"
let proper_class =
let r = lazy (find_reference morphisms "Proper") in
fun env sigma -> TC.class_info env sigma (Lazy.force r)
let proper_proxy_class =
let r = lazy (find_reference morphisms "ProperProxy") in
fun env sigma -> TC.class_info env sigma (Lazy.force r)
let proper_proj env sigma =
mkConst (Option.get (List.hd (proper_class env sigma).TC.cl_projs).TC.meth_const)
let proper_type env (sigma,cstrs) =
let l = (proper_class env sigma).TC.cl_impl in
let (sigma, c) = Evd.fresh_global env sigma l in
(sigma, cstrs), c
let proper_proxy_type env (sigma,cstrs) =
let l = (proper_proxy_class env sigma).TC.cl_impl in
let (sigma, c) = Evd.fresh_global env sigma l in
(sigma, cstrs), c
let proper_proof env evars carrier relation x =
let evars, goal = app_poly env evars proper_proxy_type [| carrier ; relation; x |] in
new_cstr_evar evars env goal
let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env
let mk_relation env evars ty =
let evars', ty = Evarsolve.refresh_universes ~onlyalg:true ~status:(Evd.UnivFlexible false)
(Some false) env (fst evars) ty in
app_poly env (evars', snd evars) relation [| ty |]
(** Build an inferred signature from constraints on the arguments and expected output
relation *)
let build_signature evars env m (cstrs : (types * types option) option list)
(finalcstr : (types * types option) option) =
let mk_relty evars newenv ty obj =
match obj with
| None | Some (_, None) ->
let evars, relty = mk_relation newenv evars ty in
if closed0 (goalevars evars) ty then
let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in
new_cstr_evar evars env' relty
else new_cstr_evar evars newenv relty
| Some (x, Some rel) -> evars, rel
in
let rec aux env evars ty l =
let t = Reductionops.whd_all env (goalevars evars) ty in
match EConstr.kind (goalevars evars) t, l with
| Prod (na, ty, b), obj :: cstrs ->
let b = Reductionops.nf_betaiota env (goalevars evars) b in
if noccurn (goalevars evars) 1 b (* non-dependent product *) then
let ty = Reductionops.nf_betaiota env (goalevars evars) ty in
let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
let evars, relty = mk_relty evars env ty obj in
let evars', b' = Evarsolve.refresh_universes ~onlyalg:true ~status:(Evd.UnivFlexible false)
(Some false) env (fst evars) b' in
let evars, newarg = app_poly env (evars', snd evars) respectful [| ty ; b' ; relty ; arg |] in
evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
else
let (evars, b, arg, cstrs) =
aux (push_rel (LocalAssum (na, ty)) env) evars b cstrs
in
let ty = Reductionops.nf_betaiota env (goalevars evars) ty in
let pred = mkLambda (na, ty, b) in
let liftarg = mkLambda (na, ty, arg) in
let evars, arg' = app_poly env evars forall_relation [| ty ; pred ; liftarg |] in
if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
else user_err Pp.(str "build_signature: no constraint can apply on a dependent argument")
| _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products.")
| _, [] ->
(match finalcstr with
| None | Some (_, None) ->
let t = Reductionops.nf_betaiota env (fst evars) ty in
let evars, rel = mk_relty evars env t None in
evars, t, rel, [t, Some rel]
| Some (t, Some rel) -> evars, t, rel, [t, Some rel])
in aux env evars m cstrs
(** Folding/unfolding of the tactic constants. *)
let unfold_impl n sigma t =
match EConstr.kind sigma t with
| App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) ->
mkProd (make_annot n Sorts.Relevant, a, lift 1 b)
| _ -> assert false
let unfold_all sigma t =
match EConstr.kind sigma t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
(match EConstr.kind sigma b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let unfold_forall sigma t =
match EConstr.kind sigma t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
(match EConstr.kind sigma b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let arrow_morphism env evd n ta tb a b =
let ap = is_Prop (goalevars evd) ta and bp = is_Prop (goalevars evd) tb in
if ap && bp then app_poly env evd impl [| a; b |], unfold_impl n
else if ap then (* Domain in Prop, CoDomain in Type *)
(app_poly env evd arrow [| a; b |]), unfold_impl n
(* (evd, mkProd (Anonymous, a, b)), (fun x -> x) *)
else if bp then (* Dummy forall *)
(app_poly env evd coq_all [| a; mkLambda (make_annot n Sorts.Relevant, a, lift 1 b) |]), unfold_forall
else (* None in Prop, use arrow *)
(app_poly env evd arrow [| a; b |]), unfold_impl n
let rec decomp_pointwise sigma n c =
if Int.equal n 0 then c
else
match EConstr.kind sigma c with
| App (f, [| a; b; relb |]) when isRefX sigma (pointwise_relation_ref ()) f ->
decomp_pointwise sigma (pred n) relb
| App (f, [| a; b; arelb |]) when isRefX sigma (forall_relation_ref ()) f ->
decomp_pointwise sigma (pred n) (Reductionops.beta_applist sigma (arelb, [mkRel 1]))
| _ -> invalid_arg "decomp_pointwise"
let rec apply_pointwise sigma rel = function
| arg :: args ->
(match EConstr.kind sigma rel with
| App (f, [| a; b; relb |]) when isRefX sigma (pointwise_relation_ref ()) f ->
apply_pointwise sigma relb args
| App (f, [| a; b; arelb |]) when isRefX sigma (forall_relation_ref ()) f ->
apply_pointwise sigma (Reductionops.beta_applist sigma (arelb, [arg])) args
| _ -> invalid_arg "apply_pointwise")
| [] -> rel
let refresh_univs env evars ty =
let evars', ty = Evarsolve.refresh_universes ~onlyalg:true ~status:(Evd.UnivFlexible false)
(Some false) env (fst evars) ty in
(evars', snd evars), ty
let pointwise_or_dep_relation env evars n t car rel =
let evars, car = refresh_univs env evars car in
if noccurn (goalevars evars) 1 car && noccurn (goalevars evars) 1 rel then
app_poly env evars pointwise_relation [| t; lift (-1) car; lift (-1) rel |]
else
app_poly env evars forall_relation
[| t; mkLambda (make_annot n Sorts.Relevant, t, car);
mkLambda (make_annot n Sorts.Relevant, t, rel) |]
let lift_cstr env evars (args : constr list) c ty cstr =
let start evars env car =
match cstr with
| None | Some (_, None) ->
let evars, rel = mk_relation env evars car in
new_cstr_evar evars env rel
| Some (ty, Some rel) -> evars, rel
in
let rec aux evars env prod n =
if Int.equal n 0 then start evars env prod
else
let sigma = goalevars evars in
match EConstr.kind sigma (Reductionops.whd_all env sigma prod) with
| Prod (na, ty, b) ->
if noccurn sigma 1 b then
let b' = lift (-1) b in
let evars, rb = aux evars env b' (pred n) in
app_poly env evars pointwise_relation [| ty; b'; rb |]
else
let evars, rb = aux evars (push_rel (LocalAssum (na, ty)) env) b (pred n) in
app_poly env evars forall_relation
[| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |]
| _ -> raise Not_found
in
let rec find env c ty = function
| [] -> None
| arg :: args ->
try let evars, found = aux evars env ty (succ (List.length args)) in
Some (evars, found, c, ty, arg :: args)
with Not_found ->
let sigma = goalevars evars in
let ty = Reductionops.whd_all env sigma ty in
find env (mkApp (c, [| arg |])) (prod_applist sigma ty [arg]) args
in find env c ty args
let unlift_cstr env sigma = function
| None -> None
| Some codom -> Some (decomp_pointwise (goalevars sigma) 1 codom)
(** Looking up declared rewrite relations (instances of [RewriteRelation]) *)
let is_applied_rewrite_relation env sigma rels t =
match EConstr.kind sigma t with
| App (c, args) when Array.length args >= 2 ->
let head = if isApp sigma c then fst (destApp sigma c) else c in
if isRefX sigma (coq_eq_ref ()) head then None
else
(try
let env' = push_rel_context rels env in
match decompose_app_rel env' sigma t with
| None -> None
| Some (equiv, ty1, ty2, concl, c1, c2) ->
let (evars, evset), inst =
app_poly env' (sigma,Evar.Set.empty)
rewrite_relation_class [| ty1; equiv |] in
let sigma, _ = TC.resolve_one_typeclass env' evars inst in
(* We check that the relation is homogeneous *after* launching resolution,
as this convertibility test might be expensive in general (e.g. this
slows down mathcomp-odd-order). *)
match evd_convertible env sigma ty1 ty2 with
| None -> None
| Some sigma -> Some (it_mkProd_or_LetIn t rels)
with e when CErrors.noncritical e -> None)
| _ -> None
end
let type_app_poly env env evd f args =
let evars, c = app_poly_nocheck env evd f args in
let evd', t = Typing.type_of env (goalevars evars) c in
(evd', cstrevars evars), c
module PropGlobal = struct
module Consts =
struct
let relation_classes = ["Coq"; "Classes"; "RelationClasses"]
let morphisms = ["Coq"; "Classes"; "Morphisms"]
let relation = ["Coq"; "Relations";"Relation_Definitions"], "relation"
let app_poly = app_poly_nocheck
let arrow = find_global ["Coq"; "Program"; "Basics"] "arrow"
let coq_inverse = find_global ["Coq"; "Program"; "Basics"] "flip"
end
module G = GlobalBindings(Consts)
include G
include Consts
let inverse env evd car rel =
type_app_poly env env evd coq_inverse [| car ; car; mkProp; rel |]
(* app_poly env evd coq_inverse [| car ; car; mkProp; rel |] *)
end
module TypeGlobal = struct
module Consts =
struct
let relation_classes = ["Coq"; "Classes"; "CRelationClasses"]
let morphisms = ["Coq"; "Classes"; "CMorphisms"]
let relation = relation_classes, "crelation"
let app_poly = app_poly_check
let arrow = find_global ["Coq"; "Classes"; "CRelationClasses"] "arrow"
let coq_inverse = find_global ["Coq"; "Classes"; "CRelationClasses"] "flip"
end
module G = GlobalBindings(Consts)
include G
include Consts
let inverse env (evd,cstrs) car rel =
let evd, car = Evarsolve.refresh_universes ~onlyalg:true (Some false) env evd car in
let (evd, sort) = Evarutil.new_Type ~rigid:Evd.univ_flexible evd in
app_poly_check env (evd,cstrs) coq_inverse [| car ; car; sort; rel |]
end
let get_type_of_refresh env evars t =
let evars', tty = Evarsolve.get_type_of_refresh env (fst evars) t in
(evars', snd evars), tty
let sort_of_rel env evm rel =
ESorts.kind evm (Reductionops.sort_of_arity env evm (Retyping.get_type_of env evm rel))
let is_applied_rewrite_relation = PropGlobal.is_applied_rewrite_relation
(* let _ = *)
(* Hook.set Equality.is_applied_rewrite_relation is_applied_rewrite_relation *)
let split_head = function
hd :: tl -> hd, tl
| [] -> assert(false)
let get_symmetric_proof b =
if b then PropGlobal.get_symmetric_proof else TypeGlobal.get_symmetric_proof
let rewrite_db = "rewrite"
let conv_transparent_state = TransparentState.cst_full
let rewrite_transparent_state () =
Hints.Hint_db.transparent_state (Hints.searchtable_map rewrite_db)
let rewrite_core_unif_flags = {
Unification.modulo_conv_on_closed_terms = None;
Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
Unification.modulo_delta = TransparentState.empty;
Unification.modulo_delta_types = TransparentState.full;
Unification.check_applied_meta_types = true;
Unification.use_pattern_unification = true;
Unification.use_meta_bound_pattern_unification = true;
Unification.allowed_evars = Evarsolve.AllowedEvars.all;
Unification.restrict_conv_on_strict_subterms = false;
Unification.modulo_betaiota = false;
Unification.modulo_eta = true;
}
(* Flags used for the setoid variant of "rewrite" and for the strategies
"hints"/"old_hints"/"terms" of "rewrite_strat", and for solving pre-existing
evars in "rewrite" (see unify_abs) *)
let rewrite_unif_flags =
let flags = rewrite_core_unif_flags in {
Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let rewrite_core_conv_unif_flags = {
rewrite_core_unif_flags with
Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
Unification.modulo_delta_types = conv_transparent_state;
Unification.modulo_betaiota = true
}
(* Fallback flags for the setoid variant of "rewrite" *)
let rewrite_conv_unif_flags =
let flags = rewrite_core_conv_unif_flags in {
Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
(* Flags for "setoid_rewrite c"/"rewrite_strat -> c" *)
let general_rewrite_unif_flags () =
let ts = rewrite_transparent_state () in
let core_flags =
{ rewrite_core_unif_flags with
Unification.modulo_conv_on_closed_terms = Some ts;
Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
Unification.modulo_delta = ts;
Unification.modulo_delta_types = TransparentState.full;
Unification.modulo_betaiota = true }
in {
Unification.core_unify_flags = core_flags;
Unification.merge_unify_flags = core_flags;
Unification.subterm_unify_flags = { core_flags with Unification.modulo_delta = TransparentState.empty };
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let refresh_hypinfo env sigma (cb : EConstr.t with_bindings delayed_open) =
let sigma, cbl = cb env sigma in
let sigma, hypinfo = decompose_applied_relation env sigma cbl in
let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
sigma, (car, rel, prf, c1, c2, holes, sort)
(** FIXME: write this in the new monad interface *)
let solve_remaining_by env sigma holes by =
match by with
| None -> sigma
| Some tac ->
let map h =
if h.Clenv.hole_deps then None
else match EConstr.kind sigma h.Clenv.hole_evar with
| Evar (evk, _) ->
Some evk
| _ -> None
in
(* Only solve independent holes *)
let indep = List.map_filter map holes in
let ist = { Geninterp.lfun = Id.Map.empty
; poly = false
; extra = Geninterp.TacStore.empty } in
let solve_tac = match tac with
| Genarg.GenArg (Genarg.Glbwit tag, tac) ->
Ftactic.run (Geninterp.interp tag ist tac) (fun _ -> Proofview.tclUNIT ())
in
let solve_tac = tclCOMPLETE solve_tac in
let solve sigma evk =
let evi =
try Some (Evd.find_undefined sigma evk)
with Not_found -> None
in
match evi with
| None -> sigma
(* Evar should not be defined, but just in case *)
| Some evi ->
let env = Environ.reset_with_named_context evi.evar_hyps env in
let ty = evi.evar_concl in
let name, poly = Id.of_string "rewrite", false in
let c, sigma = Proof.refine_by_tactic ~name ~poly env sigma ty solve_tac in
Evd.define evk (EConstr.of_constr c) sigma
in
List.fold_left solve sigma indep
let no_constraints cstrs =
fun ev _ -> not (Evar.Set.mem ev cstrs)
let poly_inverse sort =
if sort then PropGlobal.inverse else TypeGlobal.inverse
type rewrite_proof =
| RewPrf of constr * constr
(** A Relation (R : rew_car -> rew_car -> Prop) and a proof of R rew_from rew_to *)
| RewCast of cast_kind
(** A proof of convertibility (with casts) *)
type rewrite_result_info = {
rew_car : constr ;
(** A type *)
rew_from : constr ;
(** A term of type rew_car *)
rew_to : constr ;
(** A term of type rew_car *)
rew_prf : rewrite_proof ;
(** A proof of rew_from == rew_to *)
rew_evars : evars;
}
type rewrite_result =
| Fail
| Identity
| Success of rewrite_result_info
type 'a strategy_input = { state : 'a ; (* a parameter: for instance, a state *)
env : Environ.env ;
unfresh : Id.Set.t; (* Unfresh names *)
term1 : constr ;
ty1 : types ; (* first term and its type (convertible to rew_from) *)
cstr : (bool (* prop *) * constr option) ;
evars : evars }
type 'a pure_strategy = { strategy :
'a strategy_input ->
'a * rewrite_result (* the updated state and the "result" *) }
type strategy = unit pure_strategy
let symmetry env sort rew =
let { rew_evars = evars; rew_car = car; } = rew in
let (rew_evars, rew_prf) = match rew.rew_prf with
| RewCast _ -> (rew.rew_evars, rew.rew_prf)
| RewPrf (rel, prf) ->
try
let evars, symprf = get_symmetric_proof sort env evars car rel in
let prf = mkApp (symprf, [| rew.rew_from ; rew.rew_to ; prf |]) in
(evars, RewPrf (rel, prf))
with Not_found ->
let evars, rel = poly_inverse sort env evars car rel in
(evars, RewPrf (rel, prf))
in
{ rew with rew_from = rew.rew_to; rew_to = rew.rew_from; rew_prf; rew_evars; }
(* Matching/unifying the rewriting rule against [t] *)
let unify_eqn (car, rel, prf, c1, c2, holes, sort) l2r flags env (sigma, cstrs) by t =
try
let left = if l2r then c1 else c2 in
let sigma = Unification.w_unify ~flags env sigma CONV left t in
let sigma = TC.resolve_typeclasses ~filter:(no_constraints cstrs)
~fail:true env sigma in
let sigma = solve_remaining_by env sigma holes by in
let nf c = Reductionops.nf_evar sigma (Reductionops.nf_meta env sigma c) in
let c1 = nf c1 and c2 = nf c2
and rew_car = nf car and rel = nf rel
and prf = nf prf in
let ty1 = Retyping.get_type_of env sigma c1 in
let ty2 = Retyping.get_type_of env sigma c2 in
begin match Reductionops.infer_conv ~pb:CUMUL env sigma ty2 ty1 with
| None -> None
| Some sigma ->
let rew_evars = sigma, cstrs in
let rew_prf = RewPrf (rel, prf) in
let rew = { rew_evars; rew_prf; rew_car; rew_from = c1; rew_to = c2; } in
let rew = if l2r then rew else symmetry env sort rew in
Some rew
end
with
| e when noncritical e -> None
let unify_abs (car, rel, prf, c1, c2) l2r sort env (sigma, cstrs) t =
try
let left = if l2r then c1 else c2 in
(* The pattern is already instantiated, so the next w_unify is
basically an eq_constr, except when preexisting evars occur in
either the lemma or the goal, in which case the eq_constr also
solved this evars *)
let sigma = Unification.w_unify ~flags:rewrite_unif_flags env sigma CONV left t in
let rew_evars = sigma, cstrs in
let rew_prf = RewPrf (rel, prf) in
let rew = { rew_car = car; rew_from = c1; rew_to = c2; rew_prf; rew_evars; } in
let rew = if l2r then rew else symmetry env sort rew in
Some rew
with
| e when noncritical e -> None
type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }
let default_flags = { under_lambdas = true; on_morphisms = true; }
let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None
let new_global env (evars, cstrs) gr =
let (sigma,c) = Evd.fresh_global env evars gr in
(sigma, cstrs), c
let make_eq env sigma =
new_global env sigma Coqlib.(lib_ref "core.eq.type")
let make_eq_refl env sigma =
new_global env sigma Coqlib.(lib_ref "core.eq.refl")
let get_rew_prf env evars r = match r.rew_prf with
| RewPrf (rel, prf) -> evars, (rel, prf)
| RewCast c ->
let evars, eq = make_eq env evars in
let evars, eq_refl = make_eq_refl env evars in
let rel = mkApp (eq, [| r.rew_car |]) in
evars, (rel, mkCast (mkApp (eq_refl, [| r.rew_car; r.rew_from |]),
c, mkApp (rel, [| r.rew_from; r.rew_to |])))
let poly_subrelation sort =
if sort then PropGlobal.subrelation else TypeGlobal.subrelation
let resolve_subrelation env car rel sort prf rel' res =
if Termops.eq_constr (fst res.rew_evars) rel rel' then res
else
let evars, app = app_poly_check env res.rew_evars (poly_subrelation sort) [|car; rel; rel'|] in
let evars, subrel = new_cstr_evar evars env app in
let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in
{ res with
rew_prf = RewPrf (rel', appsub);
rew_evars = evars }
let resolve_morphism env m args args' (b,cstr) evars =
let evars, proj, sigargs, m', args, args' =
let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with
| Some i -> i
| None -> invalid_arg "resolve_morphism" in
let morphargs, morphobjs = Array.chop first args in
let morphargs', morphobjs' = Array.chop first args' in
let appm = mkApp(m, morphargs) in
let evd, appmtype = Typing.type_of env (goalevars evars) appm in
let evars = evd, snd evars in
let cstrs = List.map
(Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf))
(Array.to_list morphobjs')
in
(* Desired signature *)
let evars, appmtype', signature, sigargs =
if b then PropGlobal.build_signature evars env appmtype cstrs cstr
else TypeGlobal.build_signature evars env appmtype cstrs cstr
in
(* Actual signature found *)
let evars', appmtype' = Evarsolve.refresh_universes ~status:(Evd.UnivFlexible false) ~onlyalg:true
(Some false) env (fst evars) appmtype' in
let cl_args = [| appmtype' ; signature ; appm |] in
let evars, app = app_poly_sort b env (evars', snd evars) (if b then PropGlobal.proper_type else TypeGlobal.proper_type)
cl_args in
let dosub, appsub =
if b then PropGlobal.do_subrelation, PropGlobal.apply_subrelation
else TypeGlobal.do_subrelation, TypeGlobal.apply_subrelation
in
let _, dosub = app_poly_sort b env evars dosub [||] in
let _, appsub = app_poly_nocheck env evars appsub [||] in
let dosub_id = Id.of_string "do_subrelation" in
let env' = EConstr.push_named (LocalDef (make_annot dosub_id Sorts.Relevant, dosub, appsub)) env in
let evars, morph = new_cstr_evar evars env' app in
(* Replace the free [dosub_id] in the evar by the global reference *)
let morph = Vars.replace_vars [dosub_id , dosub] morph in
evars, morph, sigargs, appm, morphobjs, morphobjs'
in
let projargs, subst, evars, respars, typeargs =
Array.fold_left2
(fun (acc, subst, evars, sigargs, typeargs') x y ->
let (carrier, relation), sigargs = split_head sigargs in
match relation with
| Some relation ->
let carrier = substl subst carrier
and relation = substl subst relation in
(match y with
| None ->
let evars, proof =
(if b then PropGlobal.proper_proof else TypeGlobal.proper_proof)
env evars carrier relation x in
[ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
| Some r ->
let evars, proof = get_rew_prf env evars r in
[ snd proof; r.rew_to; x ] @ acc, subst, evars,
sigargs, r.rew_to :: typeargs')
| None ->
if not (Option.is_empty y) then
user_err Pp.(str "Cannot rewrite inside dependent arguments of a function");
x :: acc, x :: subst, evars, sigargs, x :: typeargs')
([], [], evars, sigargs, []) args args'
in
let proof = applist (proj, List.rev projargs) in
let newt = applist (m', List.rev typeargs) in
match respars with
[ a, Some r ] -> evars, proof, substl subst a, substl subst r, newt
| _ -> assert(false)
let apply_constraint env car rel prf cstr res =
match snd cstr with
| None -> res
| Some r -> resolve_subrelation env car rel (fst cstr) prf r res
let coerce env cstr res =
let evars, (rel, prf) = get_rew_prf env res.rew_evars res in
let res = { res with rew_evars = evars } in
apply_constraint env res.rew_car rel prf cstr res
let apply_rule unify : occurrences_count pure_strategy =
{ strategy = fun { state = occs ; env ;
term1 = t ; ty1 = ty ; cstr ; evars } ->
let unif = if isEvar (goalevars evars) t then None else unify env evars t in
match unif with
| None -> (occs, Fail)
| Some rew ->
let b, occs = update_occurrence_counter occs in
if not b then (occs, Fail)
else if Termops.eq_constr (fst rew.rew_evars) t rew.rew_to then (occs, Identity)
else
let res = { rew with rew_car = ty } in
let res = Success (coerce env cstr res) in
(occs, res)
}
let apply_lemma l2r flags oc by loccs : strategy = { strategy =
fun ({ state = () ; env ; term1 = t ; evars = (sigma, cstrs) } as input) ->
let sigma, c = oc sigma in
let sigma, hypinfo = decompose_applied_relation env sigma c in
let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
let rew = (car, rel, prf, c1, c2, holes, sort) in
let evars = (sigma, cstrs) in
let unify env evars t =
let rew = unify_eqn rew l2r flags env evars by t in
match rew with
| None -> None
| Some rew -> Some rew
in
let loccs, res = (apply_rule unify).strategy { input with
state = initialize_occurrence_counter loccs ;
evars } in
check_used_occurrences loccs;
(), res
}
let e_app_poly env evars f args =
let evars', c = app_poly_nocheck env !evars f args in
evars := evars';
c
let make_leibniz_proof env c ty r =
let evars = ref r.rew_evars in
let prf =
match r.rew_prf with
| RewPrf (rel, prf) ->
let rel = e_app_poly env evars coq_eq [| ty |] in
let prf =
e_app_poly env evars coq_f_equal
[| r.rew_car; ty;
mkLambda (make_annot Anonymous Sorts.Relevant, r.rew_car, c);
r.rew_from; r.rew_to; prf |]
in RewPrf (rel, prf)
| RewCast k -> r.rew_prf
in
{ rew_car = ty; rew_evars = !evars;
rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf }
let fold_match ?(force=false) env sigma c =
let case = destCase sigma c in
let (ci, p, iv, c, brs) = EConstr.expand_case env sigma case in
let cty = Retyping.get_type_of env sigma c in
let dep, pred, sk =
let env', ctx, body =
let ctx, pred = decompose_lam_assum sigma p in
let env' = push_rel_context ctx env in
env', ctx, pred
in
let sortp = Retyping.get_sort_family_of env' sigma body in
let sortc = Retyping.get_sort_family_of env sigma cty in
let dep = not (noccurn sigma 1 body) in
let pred = if dep then p else
it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx)
in
let sk =
if sortp == Sorts.InProp then
if sortc == Sorts.InProp then
if dep then case_dep_scheme_kind_from_prop
else case_scheme_kind_from_prop
else (
if dep
then case_dep_scheme_kind_from_type_in_prop
else case_scheme_kind_from_type)
else ((* sortc <> InProp by typing *)
if dep
then case_dep_scheme_kind_from_type
else case_scheme_kind_from_type)
in
match Ind_tables.lookup_scheme sk ci.ci_ind with
| Some cst ->
dep, pred, cst
| None ->
raise Not_found
in
let app =
let ind, args = Inductiveops.find_mrectype env sigma cty in
let pars, args = List.chop ci.ci_npar args in
let meths = Array.to_list brs in
applist (mkConst sk, pars @ [pred] @ meths @ args @ [c])
in
sk, env, app
let unfold_match env sigma sk app =
match EConstr.kind sigma app with
| App (f', args) when QConstant.equal env (fst (destConst sigma f')) sk ->
let v = Environ.constant_value_in env (sk,Univ.Instance.empty)(*FIXME*) in
let v = EConstr.of_constr v in
Reductionops.whd_beta env sigma (mkApp (v, args))
| _ -> app
let is_rew_cast = function RewCast _ -> true | _ -> false
let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy =
let rec aux { state ; env ; unfresh ;
term1 = t ; ty1 = ty ; cstr = (prop, cstr) ; evars } =
let cstr' = Option.map (fun c -> (ty, Some c)) cstr in
match EConstr.kind (goalevars evars) t with
| App (m, args) ->
let rewrite_args state success =
let state, (args', evars', progress) =
Array.fold_left
(fun (state, (acc, evars, progress)) arg ->
if not (Option.is_empty progress) && not all then
state, (None :: acc, evars, progress)
else
let evars, argty = get_type_of_refresh env evars arg in
let state, res = s.strategy { state ; env ;
unfresh ;
term1 = arg ; ty1 = argty ;
cstr = (prop,None) ;
evars } in
let res' =
match res with
| Identity ->
let progress = if Option.is_empty progress then Some false else progress in
(None :: acc, evars, progress)
| Success r ->
(Some r :: acc, r.rew_evars, Some true)
| Fail -> (None :: acc, evars, progress)
in state, res')
(state, ([], evars, success)) args
in
let res =
match progress with
| None -> Fail
| Some false -> Identity
| Some true ->
let args' = Array.of_list (List.rev args') in
if Array.exists
(function
| None -> false
| Some r -> not (is_rew_cast r.rew_prf)) args'
then
let evars', prf, car, rel, c2 =
resolve_morphism env m args args' (prop, cstr') evars'
in
let res = { rew_car = ty; rew_from = t;
rew_to = c2; rew_prf = RewPrf (rel, prf);
rew_evars = evars' }
in Success res
else
let args' = Array.map2
(fun aorig anew ->
match anew with None -> aorig
| Some r -> r.rew_to) args args'
in
let res = { rew_car = ty; rew_from = t;
rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast;
rew_evars = evars' }
in Success res
in state, res
in
if flags.on_morphisms then
let evars, mty = get_type_of_refresh env evars m in
let evars, cstr', m, mty, argsl, args =
let argsl = Array.to_list args in
let lift = if prop then PropGlobal.lift_cstr else TypeGlobal.lift_cstr in
match lift env evars argsl m mty None with
| Some (evars, cstr', m, mty, args) ->
evars, Some cstr', m, mty, args, Array.of_list args
| None -> evars, None, m, mty, argsl, args
in
let state, m' = s.strategy { state ; env ; unfresh ;
term1 = m ; ty1 = mty ;
cstr = (prop, cstr') ; evars } in
match m' with
| Fail -> rewrite_args state None (* Standard path, try rewrite on arguments *)
| Identity -> rewrite_args state (Some false)
| Success r ->
(* We rewrote the function and get a proof of pointwise rel for the arguments.
We just apply it. *)
let prf = match r.rew_prf with
| RewPrf (rel, prf) ->
let app = if prop then PropGlobal.apply_pointwise
else TypeGlobal.apply_pointwise
in
RewPrf (app (goalevars evars) rel argsl, mkApp (prf, args))
| x -> x
in
let res =
{ rew_car = Reductionops.hnf_prod_appvect env (goalevars evars) r.rew_car args;
rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
rew_prf = prf; rew_evars = r.rew_evars }
in
let res =
match prf with
| RewPrf (rel, prf) ->
Success (apply_constraint env res.rew_car
rel prf (prop,cstr) res)
| _ -> Success res
in state, res
else rewrite_args state None
| Prod (n, x, b) when noccurn (goalevars evars) 1 b ->
let b = subst1 mkProp b in
let evars, tx = get_type_of_refresh env evars x in
let evars, tb = get_type_of_refresh env evars b in
let arr = if prop then PropGlobal.arrow_morphism
else TypeGlobal.arrow_morphism
in
let (evars', mor), unfold = arr env evars n.binder_name tx tb x b in
let state, res = aux { state ; env ; unfresh ;
term1 = mor ; ty1 = ty ;
cstr = (prop,cstr) ; evars = evars' } in
let res =
match res with
| Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to }
| Fail | Identity -> res
in state, res
| Prod (n, dom, codom) ->
let lam = mkLambda (n, dom, codom) in
let (evars', app), unfold =
if eq_constr (fst evars) ty mkProp then
(app_poly_sort prop env evars coq_all [| dom; lam |]), TypeGlobal.unfold_all
else
let forall = if prop then PropGlobal.coq_forall else TypeGlobal.coq_forall in
(app_poly_sort prop env evars forall [| dom; lam |]), TypeGlobal.unfold_forall
in
let state, res = aux { state ; env ; unfresh ;
term1 = app ; ty1 = ty ;
cstr = (prop,cstr) ; evars = evars' } in
let res =
match res with
| Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to }
| Fail | Identity -> res
in state, res
(* TODO: real rewriting under binders: introduce x x' (H : R x x') and rewrite with
H at any occurrence of x. Ask for (R ==> R') for the lambda. Formalize this.
B. Barras' idea is to have a context of relations, of length 1, with Σ for gluing
dependent relations and using projections to get them out.
*)
| Lambda (n, t, b) when flags.under_lambdas ->
let unfresh, n' =
let id = match n.binder_name with
| Anonymous -> Namegen.default_dependent_ident
| Name id -> id
in
let id = Tactics.fresh_id_in_env unfresh id env in
Id.Set.add id unfresh, {n with binder_name = Name id}
in
let unfresh = match n'.binder_name with
| Anonymous -> unfresh
| Name id -> Id.Set.add id unfresh
in
let open Context.Rel.Declaration in
let env' = EConstr.push_rel (LocalAssum (n', t)) env in
let bty = Retyping.get_type_of env' (goalevars evars) b in
let unlift = if prop then PropGlobal.unlift_cstr else TypeGlobal.unlift_cstr in
let state, b' = s.strategy { state ; env = env' ; unfresh ;
term1 = b ; ty1 = bty ;
cstr = (prop, unlift env evars cstr) ;
evars } in
let res =
match b' with
| Success r ->
let r = match r.rew_prf with
| RewPrf (rel, prf) ->
let point = if prop then PropGlobal.pointwise_or_dep_relation else
TypeGlobal.pointwise_or_dep_relation
in
let evars, rel = point env r.rew_evars n'.binder_name t r.rew_car rel in
let prf = mkLambda (n', t, prf) in
{ r with rew_prf = RewPrf (rel, prf); rew_evars = evars }
| x -> r
in
Success { r with
rew_car = mkProd (n, t, r.rew_car);
rew_from = mkLambda(n, t, r.rew_from);
rew_to = mkLambda (n, t, r.rew_to) }
| Fail | Identity -> b'
in state, res
| Case (ci, u, pms, p, iv, c, brs) ->
let (ci, p, iv, c, brs) = EConstr.expand_case env (goalevars evars) (ci, u, pms, p, iv, c, brs) in
let cty = Retyping.get_type_of env (goalevars evars) c in
let evars', eqty = app_poly_sort prop env evars coq_eq [| cty |] in
let cstr' = Some eqty in
let state, c' = s.strategy { state ; env ; unfresh ;
term1 = c ; ty1 = cty ;
cstr = (prop, cstr') ; evars = evars' } in
let state, res =
match c' with
| Success r ->
let case = mkCase (EConstr.contract_case env (goalevars evars) (ci, lift 1 p, map_invert (lift 1) iv, mkRel 1, Array.map (lift 1) brs)) in
let res = make_leibniz_proof env case ty r in
state, Success (coerce env (prop,cstr) res)
| Fail | Identity ->
if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then
let evars', eqty = app_poly_sort prop env evars coq_eq [| ty |] in
let cstr = Some eqty in
let state, found, brs' = Array.fold_left
(fun (state, found, acc) br ->
if not (Option.is_empty found) then
(state, found, fun x -> lift 1 br :: acc x)
else
let state, res = s.strategy { state ; env ; unfresh ;
term1 = br ; ty1 = ty ;
cstr = (prop,cstr) ; evars } in
match res with
| Success r -> (state, Some r, fun x -> mkRel 1 :: acc x)
| Fail | Identity -> (state, None, fun x -> lift 1 br :: acc x))
(state, None, fun x -> []) brs
in
match found with
| Some r ->
let ctxc = mkCase (EConstr.contract_case env (goalevars evars) (ci, lift 1 p, map_invert (lift 1) iv, lift 1 c, Array.of_list (List.rev (brs' c')))) in
state, Success (make_leibniz_proof env ctxc ty r)
| None -> state, c'
else
match try Some (fold_match env (goalevars evars) t) with Not_found -> None with
| None -> state, c'
| Some (cst, _, t') ->
let state, res = aux { state ; env ; unfresh ;
term1 = t' ; ty1 = ty ;
cstr = (prop,cstr) ; evars } in
let res =
match res with
| Success prf ->
Success { prf with
rew_from = t;
rew_to = unfold_match env (goalevars evars) cst prf.rew_to }
| x' -> c'
in state, res
in
let res =
match res with
| Success r -> Success (coerce env (prop,cstr) r)
| Fail | Identity -> res
in state, res
| _ -> state, Fail
in { strategy = aux }
let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags
(** Requires transitivity of the rewrite step, if not a reduction.
Not tail-recursive. *)
let transitivity state env unfresh cstr (res : rewrite_result_info) (next : 'a pure_strategy) :
'a * rewrite_result =
let cstr = match cstr with
| _, Some _ -> cstr
| prop, None -> prop, get_opt_rew_rel res.rew_prf
in
let state, nextres =
next.strategy { state; env; unfresh; cstr;
term1 = res.rew_to;
ty1 = res.rew_car;
evars = res.rew_evars; }
in
let res =
match nextres with
| Fail -> Fail
| Identity -> Success res
| Success res' ->
match res.rew_prf with
| RewCast c -> Success { res' with rew_from = res.rew_from }
| RewPrf (rew_rel, rew_prf) ->
match res'.rew_prf with
| RewCast _ -> Success { res with rew_to = res'.rew_to }
| RewPrf (res'_rel, res'_prf) ->
let trans =
if fst cstr then PropGlobal.transitive_type
else TypeGlobal.transitive_type
in
let evars, prfty =
app_poly_sort (fst cstr) env res'.rew_evars trans [| res.rew_car; rew_rel |]
in
let evars, prf = new_cstr_evar evars env prfty in
let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
rew_prf; res'_prf |])
in Success { res' with rew_from = res.rew_from;
rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) }
in state, res
(** Rewriting strategies.
Inspired by ELAN's rewriting strategies:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)
module Strategies =
struct
let fail : 'a pure_strategy =
{ strategy = fun { state } -> state, Fail }
let id : 'a pure_strategy =
{ strategy = fun { state } -> state, Identity }
let refl : 'a pure_strategy =
{ strategy =
fun { state ; env ;
term1 = t ; ty1 = ty ;
cstr = (prop,cstr) ; evars } ->
let evars, rel = match cstr with
| None ->
let mkr = if prop then PropGlobal.mk_relation else TypeGlobal.mk_relation in
let evars, rty = mkr env evars ty in
new_cstr_evar evars env rty
| Some r -> evars, r
in
let evars, proof =
let proxy =
if prop then PropGlobal.proper_proxy_type
else TypeGlobal.proper_proxy_type
in
let evars, mty = app_poly_sort prop env evars proxy [| ty ; rel; t |] in
new_cstr_evar evars env mty
in
let res = Success { rew_car = ty; rew_from = t; rew_to = t;
rew_prf = RewPrf (rel, proof); rew_evars = evars }
in state, res
}
let progress (s : 'a pure_strategy) : 'a pure_strategy = { strategy =
fun input ->
let state, res = s.strategy input in
match res with
| Fail -> state, Fail
| Identity -> state, Fail
| Success r -> state, Success r
}
let seq first snd : 'a pure_strategy = { strategy =
fun ({ env ; unfresh ; cstr } as input) ->
let state, res = first.strategy input in
match res with
| Fail -> state, Fail
| Identity -> snd.strategy { input with state }
| Success res -> transitivity state env unfresh cstr res snd
}
let choice fst snd : 'a pure_strategy = { strategy =
fun input ->
let state, res = fst.strategy input in
match res with
| Fail -> snd.strategy { input with state }
| Identity | Success _ -> state, res
}
let try_ str : 'a pure_strategy = choice str id
let check_interrupt str input =
Control.check_for_interrupt ();
str input
let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy =
let rec aux input = (f { strategy = fun input -> check_interrupt aux input }).strategy input in
{ strategy = aux }
let any (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun any -> try_ (seq s any))
let repeat (s : 'a pure_strategy) : 'a pure_strategy =
seq s (any s)
let bu (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s'))
let td (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s'))
let innermost (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun ins -> choice (one_subterm ins) s)
let outermost (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun out -> choice s (one_subterm out))
let lemmas cs : 'a pure_strategy =
List.fold_left (fun tac (l,l2r,by) ->
choice tac (apply_lemma l2r rewrite_unif_flags l by AllOccurrences))
fail cs
let inj_open hint = (); fun sigma ->
let ctx = UState.of_context_set hint.Autorewrite.rew_ctx in
let sigma = Evd.merge_universe_context sigma ctx in
(sigma, (EConstr.of_constr hint.Autorewrite.rew_lemma, NoBindings))
let old_hints (db : string) : 'a pure_strategy =
let rules = Autorewrite.find_rewrites db in
lemmas
(List.map (fun hint -> (inj_open hint, hint.Autorewrite.rew_l2r,
hint.Autorewrite.rew_tac)) rules)
let hints (db : string) : 'a pure_strategy = { strategy =
fun ({ term1 = t } as input) ->
let t = EConstr.Unsafe.to_constr t in
let rules = Autorewrite.find_matches db t in
let lemma hint = (inj_open hint, hint.Autorewrite.rew_l2r,
hint.Autorewrite.rew_tac) in
let lems = List.map lemma rules in
(lemmas lems).strategy input
}
let reduce (r : Redexpr.red_expr) : 'a pure_strategy = { strategy =
fun { state = state ; env = env ; term1 = t ; ty1 = ty ; cstr = cstr ; evars = evars } ->
let rfn, ckind = Redexpr.reduction_of_red_expr env r in
let sigma = goalevars evars in
let (sigma, t') = rfn env sigma t in
if Termops.eq_constr sigma t' t then
state, Identity
else
state, Success { rew_car = ty; rew_from = t; rew_to = t';
rew_prf = RewCast ckind;
rew_evars = sigma, cstrevars evars }
}
let fold_glob c : 'a pure_strategy = { strategy =
fun { state ; env ; term1 = t ; ty1 = ty ; cstr ; evars } ->
(* let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *)
let sigma, c = Pretyping.understand_tcc env (goalevars evars) c in
let unfolded =
try Tacred.try_red_product env sigma c
with e when CErrors.noncritical e ->
user_err Pp.(str "fold: the term is not unfoldable!")
in
try
let sigma = Unification.w_unify env sigma CONV ~flags:(Unification.elim_flags ()) unfolded t in
let c' = Reductionops.nf_evar sigma c in
state, Success { rew_car = ty; rew_from = t; rew_to = c';
rew_prf = RewCast DEFAULTcast;
rew_evars = (sigma, snd evars) }
with e when CErrors.noncritical e -> state, Fail
}
end
(** The strategy for a single rewrite, dealing with occurrences. *)
(** A dummy initial clauseenv to avoid generating initial evars before
even finding a first application of the rewriting lemma, in setoid_rewrite
mode *)
let rewrite_with l2r flags c occs : strategy = { strategy =
fun ({ state = () } as input) ->
let unify env evars t =
let (sigma, cstrs) = evars in
let (sigma, rew) = refresh_hypinfo env sigma c in
unify_eqn rew l2r flags env (sigma, cstrs) None t
in
let app = apply_rule unify in
let strat =
Strategies.fix (fun aux ->
Strategies.choice (Strategies.progress app) (subterm true default_flags aux))
in
let occs, res = strat.strategy { input with state = initialize_occurrence_counter occs } in
check_used_occurrences occs;
((), res)
}
let apply_strategy (s : strategy) env unfresh concl (prop, cstr) evars =
let ty = Retyping.get_type_of env (goalevars evars) concl in
let _, res = s.strategy { state = () ; env ; unfresh ;
term1 = concl ; ty1 = ty ;
cstr = (prop, Some cstr) ; evars } in
res
let solve_constraints env (evars,cstrs) =
let oldtcs = Evd.get_typeclass_evars evars in
let evars' = Evd.set_typeclass_evars evars cstrs in
let evars' = TC.resolve_typeclasses env ~filter:TC.all_evars ~split:false ~fail:true evars' in
Evd.set_typeclass_evars evars' oldtcs
let nf_zeta =
Reductionops.clos_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA])
exception RewriteFailure of Environ.env * Evd.evar_map * pretype_error
type result = (evar_map * constr option * types) option option
let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result =
let sigma, sort = Typing.sort_of env sigma concl in
let evdref = ref sigma in
let evars = (!evdref, Evar.Set.empty) in
let evars, cstr =
let prop, (evars, arrow) =
if Sorts.is_prop sort then true, app_poly_sort true env evars impl [||]
else false, app_poly_sort false env evars TypeGlobal.arrow [||]
in
match is_hyp with
| None ->
let evars, t = poly_inverse prop env evars (mkSort sort) arrow in
evars, (prop, t)
| Some _ -> evars, (prop, arrow)
in
let eq = apply_strategy strat env avoid concl cstr evars in
match eq with
| Fail -> None
| Identity -> Some None
| Success res ->
let (_, cstrs) = res.rew_evars in
let evars = solve_constraints env res.rew_evars in
let () =
Evar.Set.iter
(fun ev ->
if not (Evd.is_defined evars ev) then
user_err
(str "Unsolved constraint remaining: " ++ spc () ++
Termops.pr_evar_info env evars (Evd.find evars ev) ++ str "."))
cstrs
in
let newt = res.rew_to in
let res = match res.rew_prf with
| RewCast c -> None
| RewPrf (rel, p) ->
let p = nf_zeta env evars p in
let term =
match abs with
| None -> p
| Some (t, ty) ->
mkApp (mkLambda (make_annot (Name (Id.of_string "lemma")) Sorts.Relevant, ty, p), [| t |])
in
let proof = match is_hyp with
| None -> term
| Some id -> mkApp (term, [| mkVar id |])
in
Some proof
in
Some (Some (evars, res, newt))
(** Insert a declaration after the last declaration it depends on *)
let rec insert_dependent env sigma decl accu hyps = match hyps with
| [] -> List.rev_append accu [decl]
| ndecl :: rem ->
if occur_var_in_decl env sigma (NamedDecl.get_id ndecl) decl then
List.rev_append accu (decl :: hyps)
else
insert_dependent env sigma decl (ndecl :: accu) rem
let assert_replacing id newt tac =
let prf = Proofview.Goal.enter begin fun gl ->
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let sigma = Tacmach.project gl in
let ctx = named_context env in
let after, before = List.split_when (NamedDecl.get_id %> Id.equal id) ctx in
let nc = match before with
| [] -> assert false
| d :: rem -> insert_dependent env sigma
(LocalAssum (make_annot (NamedDecl.get_id d) Sorts.Relevant, newt)) [] after @ rem
in
let env' = Environ.reset_with_named_context (val_of_named_context nc) env in
Refine.refine ~typecheck:true begin fun sigma ->
let (sigma, ev) = Evarutil.new_evar env' sigma concl in
let (sigma, ev') = Evarutil.new_evar env sigma newt in
let map d =
let n = NamedDecl.get_id d in
if Id.equal n id then ev' else mkVar n
in
let (e, _) = destEvar sigma ev in
(sigma, mkEvar (e, List.map map nc))
end
end in
Proofview.tclTHEN prf (Proofview.tclFOCUS 2 2 tac)
let newfail n s =
let info = Exninfo.reify () in
Proofview.tclZERO ~info (Tacticals.FailError (n, lazy s))
let cl_rewrite_clause_newtac ?abs ?origsigma ~progress strat clause =
let open Proofview.Notations in
(* For compatibility *)
let beta = Tactics.reduct_in_concl ~cast:false ~check:false
(Reductionops.nf_betaiota, DEFAULTcast)
in
let beta_hyp id = Tactics.reduct_in_hyp ~check:false ~reorder:false Reductionops.nf_betaiota (id, InHyp) in
let treat sigma res state =
match res with
| None -> newfail 0 (str "Nothing to rewrite")
| Some None ->
if progress
then newfail 0 (str"Failed to progress")
else Proofview.tclUNIT ()
| Some (Some res) ->
let (undef, prf, newt) = res in
let fold ev _ accu = if Evd.mem sigma ev then accu else ev :: accu in
let gls = List.rev (Evd.fold_undefined fold undef []) in
let gls = List.map (fun gl -> Proofview.goal_with_state gl state) gls in
match clause, prf with
| Some id, Some p ->
let tac = tclTHENLIST [
Refine.refine ~typecheck:true (fun h -> (h,p));
Proofview.Unsafe.tclNEWGOALS gls;
] in
Proofview.Unsafe.tclEVARS undef <*>
tclTHENFIRST (assert_replacing id newt tac) (beta_hyp id)
| Some id, None ->
Proofview.Unsafe.tclEVARS undef <*>
convert_hyp ~check:false ~reorder:false (LocalAssum (make_annot id Sorts.Relevant, newt)) <*>
beta_hyp id
| None, Some p ->
Proofview.Unsafe.tclEVARS undef <*>
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let make = begin fun sigma ->
let (sigma, ev) = Evarutil.new_evar env sigma newt in
(sigma, mkApp (p, [| ev |]))
end in
Refine.refine ~typecheck:true make <*> Proofview.Unsafe.tclNEWGOALS gls
end
| None, None ->
Proofview.Unsafe.tclEVARS undef <*>
convert_concl ~cast:false ~check:false newt DEFAULTcast
in
Proofview.Goal.enter begin fun gl ->
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let state = Proofview.Goal.state gl in
let sigma = Tacmach.project gl in
let ty = match clause with
| None -> concl
| Some id -> EConstr.of_constr (Environ.named_type id env)
in
let env = match clause with
| None -> env
| Some id ->
(* Only consider variables not depending on [id] *)
let ctx = named_context env in
let filter decl = not (occur_var_in_decl env sigma id decl) in
let nctx = List.filter filter ctx in
Environ.reset_with_named_context (val_of_named_context nctx) env
in
try
let res =
cl_rewrite_clause_aux ?abs strat env Id.Set.empty sigma ty clause
in
let sigma = match origsigma with None -> sigma | Some sigma -> sigma in
treat sigma res state <*>
(* For compatibility *)
beta <*> Proofview.shelve_unifiable
with
| PretypeError (env, evd, (UnsatisfiableConstraints _ as e)) ->
raise (RewriteFailure (env, evd, e))
end
let tactic_init_setoid () =
try init_setoid (); Proofview.tclUNIT ()
with e when CErrors.noncritical e ->
let _, info = Exninfo.capture e in
Tacticals.tclFAIL ~info (str"Setoid library not loaded")
let cl_rewrite_clause_strat progress strat clause =
tactic_init_setoid () <*>
(if progress then Proofview.tclPROGRESS else fun x -> x)
(Proofview.tclOR
(cl_rewrite_clause_newtac ~progress strat clause)
(fun (e, info) -> match e with
| Tacticals.FailError (n, pp) ->
tclFAILn ~info n (str"setoid rewrite failed: " ++ Lazy.force pp)
| e ->
Proofview.tclZERO ~info e))
(** Setoid rewriting when called with "setoid_rewrite" *)
let cl_rewrite_clause l left2right occs clause =
let strat = rewrite_with left2right (general_rewrite_unif_flags ()) l occs in
cl_rewrite_clause_strat true strat clause
(** Setoid rewriting when called with "rewrite_strat" *)
let cl_rewrite_clause_strat strat clause =
cl_rewrite_clause_strat false strat clause
let apply_glob_constr ((_, c) : _ * EConstr.t delayed_open) l2r occs = (); fun ({ state = () ; env = env } as input) ->
let c sigma =
let (sigma, c) = c env sigma in
(sigma, (c, NoBindings))
in
let flags = general_rewrite_unif_flags () in
(apply_lemma l2r flags c None occs).strategy input
let interp_glob_constr_list env =
let make c = (); fun sigma ->
let sigma, c = Pretyping.understand_tcc env sigma c in
(sigma, (c, NoBindings))
in
List.map (fun c -> make c, true, None)
(* Syntax for rewriting with strategies *)
type unary_strategy =
Subterms | Subterm | Innermost | Outermost
| Bottomup | Topdown | Progress | Try | Any | Repeat
type binary_strategy =
| Compose
type nary_strategy = Choice
type ('constr,'redexpr) strategy_ast =
| StratId | StratFail | StratRefl
| StratUnary of unary_strategy * ('constr,'redexpr) strategy_ast
| StratBinary of
binary_strategy * ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast
| StratNAry of nary_strategy * ('constr,'redexpr) strategy_ast list
| StratConstr of 'constr * bool
| StratTerms of 'constr list
| StratHints of bool * string
| StratEval of 'redexpr
| StratFold of 'constr
let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function
| StratId | StratFail | StratRefl as s -> s
| StratUnary (s, str) -> StratUnary (s, map_strategy f g str)
| StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str')
| StratNAry (s, strs) -> StratNAry (s, List.map (map_strategy f g) strs)
| StratConstr (c, b) -> StratConstr (f c, b)
| StratTerms l -> StratTerms (List.map f l)
| StratHints (b, id) -> StratHints (b, id)
| StratEval r -> StratEval (g r)
| StratFold c -> StratFold (f c)
let pr_ustrategy = function
| Subterms -> str "subterms"
| Subterm -> str "subterm"
| Innermost -> str "innermost"
| Outermost -> str "outermost"
| Bottomup -> str "bottomup"
| Topdown -> str "topdown"
| Progress -> str "progress"
| Try -> str "try"
| Any -> str "any"
| Repeat -> str "repeat"
let paren p = str "(" ++ p ++ str ")"
let rec pr_strategy prc prr = function
| StratId -> str "id"
| StratFail -> str "fail"
| StratRefl -> str "refl"
| StratUnary (s, str) ->
pr_ustrategy s ++ spc () ++ paren (pr_strategy prc prr str)
| StratNAry (Choice, strs) ->
str "choice" ++ spc () ++ prlist_with_sep spc (fun str -> paren (pr_strategy prc prr str)) strs
| StratBinary (Compose, str1, str2) ->
pr_strategy prc prr str1 ++ str ";" ++ spc () ++ pr_strategy prc prr str2
| StratConstr (c, true) -> prc c
| StratConstr (c, false) -> str "<-" ++ spc () ++ prc c
| StratTerms cl -> str "terms" ++ spc () ++ pr_sequence prc cl
| StratHints (old, id) ->
let cmd = if old then "old_hints" else "hints" in
str cmd ++ spc () ++ str id
| StratEval r -> str "eval" ++ spc () ++ prr r
| StratFold c -> str "fold" ++ spc () ++ prc c
let rec strategy_of_ast = function
| StratId -> Strategies.id
| StratFail -> Strategies.fail
| StratRefl -> Strategies.refl
| StratUnary (f, s) ->
let s' = strategy_of_ast s in
let f' = match f with
| Subterms -> all_subterms
| Subterm -> one_subterm
| Innermost -> Strategies.innermost
| Outermost -> Strategies.outermost
| Bottomup -> Strategies.bu
| Topdown -> Strategies.td
| Progress -> Strategies.progress
| Try -> Strategies.try_
| Any -> Strategies.any
| Repeat -> Strategies.repeat
in f' s'
| StratBinary (f, s, t) ->
let s' = strategy_of_ast s in
let t' = strategy_of_ast t in
let f' = match f with
| Compose -> Strategies.seq
in f' s' t'
| StratNAry (Choice, strs) ->
let strs = List.map (strategy_of_ast) strs in
begin match strs with
| [] -> assert false
| s::strs -> List.fold_left Strategies.choice s strs
end
| StratConstr (c, b) -> { strategy = apply_glob_constr c b AllOccurrences }
| StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id
| StratTerms l -> { strategy =
(fun ({ state = () ; env } as input) ->
let l' = interp_glob_constr_list env (List.map fst l) in
(Strategies.lemmas l').strategy input)
}
| StratEval r -> { strategy =
(fun ({ state = () ; env ; evars } as input) ->
let (sigma, r_interp) = r env (goalevars evars) in
(Strategies.reduce r_interp).strategy { input with
evars = (sigma,cstrevars evars) }) }
| StratFold c -> Strategies.fold_glob (fst c)
let proper_projection env sigma r ty =
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in
let ctx, inst = decompose_prod_assum sigma ty in
let mor, args = destApp sigma inst in
let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
let app = mkApp (PropGlobal.proper_proj env sigma,
Array.append args [| instarg |]) in
it_mkLambda_or_LetIn app ctx
let build_morphism_signature env sigma m =
let m,ctx = Constrintern.interp_constr env sigma m in
let sigma = Evd.from_ctx ctx in
let t = Retyping.get_type_of env sigma m in
let cstrs =
let rec aux t =
match EConstr.kind sigma t with
| Prod (na, a, b) ->
None :: aux b
| _ -> []
in aux t
in
let evars, t', sig_, cstrs =
PropGlobal.build_signature (sigma, Evar.Set.empty) env t cstrs None in
let evd = ref evars in
let _ = List.iter
(fun (ty, rel) ->
Option.iter (fun rel ->
let default = e_app_poly env evd PropGlobal.default_relation [| ty; rel |] in
let evd', t = new_cstr_evar !evd env default in
evd := evd')
rel)
cstrs
in
let morph = e_app_poly env evd PropGlobal.proper_type [| t; sig_; m |] in
let evd = solve_constraints env !evd in
evd, morph
let default_morphism env sigma sign m =
let t = Retyping.get_type_of env sigma m in
let evars, _, sign, cstrs =
PropGlobal.build_signature (sigma, Evar.Set.empty) env t (fst sign) (snd sign)
in
let evars, morph = app_poly_check env evars PropGlobal.proper_type [| t; sign; m |] in
let evars, mor = TC.resolve_one_typeclass env (goalevars evars) morph in
mor, proper_projection env sigma mor morph
(** Bind to "rewrite" too *)
(** Taken from original setoid_replace, to emulate the old rewrite semantics where
lemmas are first instantiated and then rewrite proceeds. *)
let check_evar_map_of_evars_defs env evd =
let metas = Evd.meta_list evd in
let check_freemetas_is_empty rebus =
Evd.Metaset.iter
(fun m ->
if Evd.meta_defined evd m then ()
else begin
raise
(Logic.RefinerError (env, evd, Logic.UnresolvedBindings [Evd.meta_name evd m]))
end)
in
List.iter
(fun (_,binding) ->
match binding with
Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
check_freemetas_is_empty rebus freemetas
| Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
{Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
check_freemetas_is_empty rebus1 freemetas1 ;
check_freemetas_is_empty rebus2 freemetas2
) metas
(* Find a subterm which matches the pattern to rewrite for "rewrite" *)
let unification_rewrite l2r c1 c2 sigma prf car rel but env =
let (sigma,c') =
try
(* ~flags:(false,true) to allow to mark occurrences that must not be
rewritten simply by replacing them with let-defined definitions
in the context *)
Unification.w_unify_to_subterm
~flags:rewrite_unif_flags
env sigma ((if l2r then c1 else c2),but)
with
| ex when Pretype_errors.precatchable_exception ex ->
(* ~flags:(true,true) to make Ring work (since it really
exploits conversion) *)
Unification.w_unify_to_subterm
~flags:rewrite_conv_unif_flags
env sigma ((if l2r then c1 else c2),but)
in
let nf c = Reductionops.nf_evar sigma c in
let c1 = if l2r then nf c' else nf c1
and c2 = if l2r then nf c2 else nf c'
and car = nf car and rel = nf rel in
check_evar_map_of_evars_defs env sigma;
let prf = nf prf in
let prfty = nf (Retyping.get_type_of env sigma prf) in
let sort = sort_of_rel env sigma but in
let abs = prf, prfty in
let prf = mkRel 1 in
let res = (car, rel, prf, c1, c2) in
abs, sigma, res, Sorts.is_prop sort
let get_hyp gl (c,l) clause l2r =
let evars = Tacmach.project gl in
let env = Tacmach.pf_env gl in
let sigma, hi = decompose_applied_relation env evars (c,l) in
let but = match clause with
| Some id -> Tacmach.pf_get_hyp_typ id gl
| None -> Reductionops.nf_evar evars (Tacmach.pf_concl gl)
in
unification_rewrite l2r hi.c1 hi.c2 sigma hi.prf hi.car hi.rel but env
let general_rewrite_flags = { under_lambdas = false; on_morphisms = true }
(** Setoid rewriting when called with "rewrite" *)
let general_s_rewrite cl l2r occs (c,l) ~new_goals =
Proofview.Goal.enter begin fun gl ->
let abs, evd, res, sort = get_hyp gl (c,l) cl l2r in
let unify env evars t = unify_abs res l2r sort env evars t in
let app = apply_rule unify in
let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in
let substrat = Strategies.fix recstrat in
let strat = { strategy = fun ({ state = () } as input) ->
let occs, res = substrat.strategy { input with state = initialize_occurrence_counter occs } in
check_used_occurrences occs;
(), res
}
in
let origsigma = Tacmach.project gl in
tactic_init_setoid () <*>
Proofview.tclOR
(tclPROGRESS
(tclTHEN
(Proofview.Unsafe.tclEVARS evd)
(cl_rewrite_clause_newtac ~progress:true ~abs:(Some abs) ~origsigma strat cl)))
(fun (e, info) -> match e with
| e -> Proofview.tclZERO ~info e)
end
let _ = Hook.set Equality.general_setoid_rewrite_clause general_s_rewrite
(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)
let not_declared ~info env sigma ty rel =
tclFAIL ~info
(str" The relation " ++ Printer.pr_econstr_env env sigma rel ++ str" is not a declared " ++
str ty ++ str" relation. Maybe you need to require the Coq.Classes.RelationClasses library")
let setoid_proof ty fn fallback =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Tacmach.project gl in
let concl = Proofview.Goal.concl gl in
Proofview.tclORELSE
begin
try
let rel, ty1, ty2, concl, _, _ = decompose_app_rel_error env sigma concl in
let (sigma, t) = Typing.type_of env sigma rel in
let car = snd (List.hd (fst (Reductionops.splay_prod env sigma t))) in
(try init_relation_classes () with _ -> raise Not_found);
fn env sigma car rel
with e when CErrors.noncritical e ->
(* XXX what is the right test here as to whether e can be converted ? *)
let e, info = Exninfo.capture e in
Proofview.tclZERO ~info e
end
begin function
| e ->
Proofview.tclORELSE
fallback
begin function (e', info) -> match e' with
| Hipattern.NoEquationFound ->
begin match e with
| (Not_found, _) ->
let rel, _, _, _, _, _ = decompose_app_rel_error env sigma concl in
not_declared ~info env sigma ty rel
| (e, info) ->
Proofview.tclZERO ~info e
end
| e' -> Proofview.tclZERO ~info e'
end
end
end
let tac_open ((evm,_), c) tac =
(tclTHEN (Proofview.Unsafe.tclEVARS evm) (tac c))
let poly_proof getp gett env evm car rel =
if Sorts.is_prop (sort_of_rel env evm rel) then
getp env (evm,Evar.Set.empty) car rel
else gett env (evm,Evar.Set.empty) car rel
let setoid_reflexivity =
setoid_proof "reflexive"
(fun env evm car rel ->
tac_open (poly_proof PropGlobal.get_reflexive_proof
TypeGlobal.get_reflexive_proof
env evm car rel)
(fun c -> tclCOMPLETE (apply c)))
(reflexivity_red true)
let setoid_symmetry =
setoid_proof "symmetric"
(fun env evm car rel ->
tac_open
(poly_proof PropGlobal.get_symmetric_proof TypeGlobal.get_symmetric_proof
env evm car rel)
(fun c -> apply c))
(symmetry_red true)
let setoid_transitivity c =
setoid_proof "transitive"
(fun env evm car rel ->
tac_open (poly_proof PropGlobal.get_transitive_proof TypeGlobal.get_transitive_proof
env evm car rel)
(fun proof -> match c with
| None -> eapply proof
| Some c -> apply_with_bindings (proof,ImplicitBindings [ c ])))
(transitivity_red true c)
let setoid_symmetry_in id =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let ctype = Retyping.get_type_of env sigma (mkVar id) in
let binders,concl = decompose_prod_assum sigma ctype in
let (equiv, args) = decompose_app sigma concl in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z -> let l,res = split_last_two (y::z) in x::l, res
| _ -> user_err Pp.(str "Cannot find an equivalence relation to rewrite.")
in
let others,(c1,c2) = split_last_two args in
let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in
let new_hyp' = mkApp (he, [| c2 ; c1 |]) in
let new_hyp = it_mkProd_or_LetIn new_hyp' binders in
(tclTHENLAST
(Tactics.assert_after_replacing id new_hyp)
(tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ]))
end
let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity
let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry
let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in
let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity
let get_lemma_proof f env evm x y =
let (evm, _), c = f env (evm,Evar.Set.empty) x y in
evm, c
let get_reflexive_proof =
get_lemma_proof PropGlobal.get_reflexive_proof
let get_symmetric_proof =
get_lemma_proof PropGlobal.get_symmetric_proof
let get_transitive_proof =
get_lemma_proof PropGlobal.get_transitive_proof
module Internal =
struct
let build_signature env sigma m cstr finalcstr =
let evars = (sigma, Evar.Set.empty) in
let ((sigma, _), _, sig_, cstr) = PropGlobal.build_signature evars env m cstr finalcstr in
sigma, sig_, cstr
let build_morphism_signature = build_morphism_signature
let default_morphism = default_morphism
end
|