1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*i*)
open Util
open Constr
open Names
open Globnames
open Mod_subst
open Pp (* debug *)
(*i*)
(* Representation/approximation of terms to use in the dnet:
*
* - no meta or evar (use ['a pattern] for that)
*
* - [Rel]s and [Sort]s are not taken into account (that's why we need
* a second pass of linear filterin on the results - it's not a perfect
* term indexing structure)
* - Foralls and LetIns are represented by a context DCtx (a list of
* generalization, similar to rel_context, and coded with DCons and
* DNil). This allows for matching under an unfinished context
*)
module DTerm =
struct
type 't t =
| DRel
| DSort
| DRef of GlobRef.t
| DCtx of 't * 't (* (binding list, subterm) = Prods and LetIns *)
| DLambda of 't * 't
| DApp of 't * 't (* binary app *)
| DCase of case_info * 't * 't * 't array
| DFix of int array * int * 't array * 't array
| DCoFix of int * 't array * 't array
| DInt of Uint63.t
| DFloat of Float64.t
| DArray of 't array * 't * 't
(* special constructors only inside the left-hand side of DCtx or
DApp. Used to encode lists of foralls/letins/apps as contexts *)
| DCons of ('t * 't option) * 't
| DNil
(* debug *)
let _pr_dconstr f : 'a t -> Pp.t = function
| DRel -> str "*"
| DSort -> str "Sort"
| DRef _ -> str "Ref"
| DCtx (ctx,t) -> f ctx ++ spc() ++ str "|-" ++ spc () ++ f t
| DLambda (t1,t2) -> str "fun"++ spc() ++ f t1 ++ spc() ++ str"->" ++ spc() ++ f t2
| DApp (t1,t2) -> f t1 ++ spc() ++ f t2
| DCase (_,t1,t2,ta) -> str "case"
| DFix _ -> str "fix"
| DCoFix _ -> str "cofix"
| DInt _ -> str "INT"
| DFloat _ -> str "FLOAT"
| DCons ((t,dopt),tl) -> f t ++ (match dopt with
Some t' -> str ":=" ++ f t'
| None -> str "") ++ spc() ++ str "::" ++ spc() ++ f tl
| DNil -> str "[]"
| DArray _ -> str "ARRAY"
(*
* Functional iterators for the t datatype
* a.k.a boring and error-prone boilerplate code
*)
let map f = function
| (DRel | DSort | DNil | DRef _ | DInt _ | DFloat _) as c -> c
| DCtx (ctx,c) -> DCtx (f ctx, f c)
| DLambda (t,c) -> DLambda (f t, f c)
| DApp (t,u) -> DApp (f t,f u)
| DCase (ci,p,c,bl) -> DCase (ci, f p, f c, Array.map f bl)
| DFix (ia,i,ta,ca) ->
DFix (ia,i,Array.map f ta,Array.map f ca)
| DCoFix(i,ta,ca) ->
DCoFix (i,Array.map f ta,Array.map f ca)
| DCons ((t,topt),u) -> DCons ((f t,Option.map f topt), f u)
| DArray (t,def,ty) -> DArray(Array.map f t, f def, f ty)
let compare_ci ci1 ci2 =
let c = Ind.CanOrd.compare ci1.ci_ind ci2.ci_ind in
if c = 0 then
let c = Int.compare ci1.ci_npar ci2.ci_npar in
if c = 0 then
let c = Array.compare Int.compare ci1.ci_cstr_ndecls ci2.ci_cstr_ndecls in
if c = 0 then
Array.compare Int.compare ci1.ci_cstr_nargs ci2.ci_cstr_nargs
else c
else c
else c
let compare cmp t1 t2 = match t1, t2 with
| DRel, DRel -> 0
| DRel, _ -> -1 | _, DRel -> 1
| DSort, DSort -> 0
| DSort, _ -> -1 | _, DSort -> 1
| DRef gr1, DRef gr2 -> GlobRef.CanOrd.compare gr1 gr2
| DRef _, _ -> -1 | _, DRef _ -> 1
| DCtx (tl1, tr1), DCtx (tl2, tr2)
| DLambda (tl1, tr1), DLambda (tl2, tr2)
| DApp (tl1, tr1), DApp (tl2, tr2) ->
let c = cmp tl1 tl2 in
if c = 0 then cmp tr1 tr2 else c
| DCtx _, _ -> -1 | _, DCtx _ -> 1
| DLambda _, _ -> -1 | _, DLambda _ -> 1
| DApp _, _ -> -1 | _, DApp _ -> 1
| DCase (ci1, c1, t1, p1), DCase (ci2, c2, t2, p2) ->
let c = cmp c1 c2 in
if c = 0 then
let c = cmp t1 t2 in
if c = 0 then
let c = Array.compare cmp p1 p2 in
if c = 0 then compare_ci ci1 ci2
else c
else c
else c
| DCase _, _ -> -1 | _, DCase _ -> 1
| DFix (i1, j1, tl1, pl1), DFix (i2, j2, tl2, pl2) ->
let c = Int.compare j1 j2 in
if c = 0 then
let c = Array.compare Int.compare i1 i2 in
if c = 0 then
let c = Array.compare cmp tl1 tl2 in
if c = 0 then Array.compare cmp pl1 pl2
else c
else c
else c
| DFix _, _ -> -1 | _, DFix _ -> 1
| DCoFix (i1, tl1, pl1), DCoFix (i2, tl2, pl2) ->
let c = Int.compare i1 i2 in
if c = 0 then
let c = Array.compare cmp tl1 tl2 in
if c = 0 then Array.compare cmp pl1 pl2
else c
else c
| DCoFix _, _ -> -1 | _, DCoFix _ -> 1
| DInt i1, DInt i2 -> Uint63.compare i1 i2
| DInt _, _ -> -1 | _, DInt _ -> 1
| DFloat f1, DFloat f2 -> Float64.total_compare f1 f2
| DFloat _, _ -> -1 | _, DFloat _ -> 1
| DArray(t1,def1,ty1), DArray(t2,def2,ty2) ->
let c = Array.compare cmp t1 t2 in
if c = 0 then
let c = cmp def1 def2 in
if c = 0 then
cmp ty1 ty2
else c
else c
| DArray _, _ -> -1 | _, DArray _ -> 1
| DCons ((t1, ot1), u1), DCons ((t2, ot2), u2) ->
let c = cmp t1 t2 in
if Int.equal c 0 then
let c = Option.compare cmp ot1 ot2 in
if Int.equal c 0 then cmp u1 u2
else c
else c
| DCons _, _ -> -1 | _, DCons _ -> 1
| DNil, DNil -> 0
let fold f acc = function
| (DRel | DNil | DSort | DRef _ | DInt _ | DFloat _) -> acc
| DCtx (ctx,c) -> f (f acc ctx) c
| DLambda (t,c) -> f (f acc t) c
| DApp (t,u) -> f (f acc t) u
| DCase (ci,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
| DFix (ia,i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCoFix(i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DArray(t,def,ty) -> f (f (Array.fold_left f acc t) def) ty
| DCons ((t,topt),u) -> f (Option.fold_left f (f acc t) topt) u
let choose f = function
| (DRel | DSort | DNil | DRef _ | DInt _ | DFloat _) -> invalid_arg "choose"
| DCtx (ctx,c) -> f ctx
| DLambda (t,c) -> f t
| DApp (t,u) -> f u
| DCase (ci,p,c,bl) -> f c
| DFix (ia,i,ta,ca) -> f ta.(0)
| DCoFix (i,ta,ca) -> f ta.(0)
| DCons ((t,topt),u) -> f u
| DArray(t,def,ty) -> f t.(0)
let dummy_cmp () () = 0
let fold2 (f:'a -> 'b -> 'c -> 'a) (acc:'a) (c1:'b t) (c2:'c t) : 'a =
let head w = map (fun _ -> ()) w in
if not (Int.equal (compare dummy_cmp (head c1) (head c2)) 0)
then invalid_arg "fold2:compare" else
match c1,c2 with
| (DRel, DRel | DNil, DNil | DSort, DSort | DRef _, DRef _
| DInt _, DInt _ | DFloat _, DFloat _) -> acc
| (DCtx (c1,t1), DCtx (c2,t2)
| DApp (c1,t1), DApp (c2,t2)
| DLambda (c1,t1), DLambda (c2,t2)) -> f (f acc c1 c2) t1 t2
| DCase (ci,p1,c1,bl1),DCase (_,p2,c2,bl2) ->
Array.fold_left2 f (f (f acc p1 p2) c1 c2) bl1 bl2
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
Array.fold_left2 f (Array.fold_left2 f acc ta1 ta2) ca1 ca2
| DCoFix(i,ta1,ca1), DCoFix(_,ta2,ca2) ->
Array.fold_left2 f (Array.fold_left2 f acc ta1 ta2) ca1 ca2
| DArray(t1,def1,ty1), DArray(t2,def2,ty2) ->
f (f (Array.fold_left2 f acc t1 t2) def1 def2) ty1 ty2
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
f (Option.fold_left2 f (f acc t1 t2) topt1 topt2) u1 u2
| (DRel | DNil | DSort | DRef _ | DCtx _ | DApp _ | DLambda _ | DCase _
| DFix _ | DCoFix _ | DCons _ | DInt _ | DFloat _| DArray _), _ -> assert false
let map2 (f:'a -> 'b -> 'c) (c1:'a t) (c2:'b t) : 'c t =
let head w = map (fun _ -> ()) w in
if not (Int.equal (compare dummy_cmp (head c1) (head c2)) 0)
then invalid_arg "map2_t:compare" else
match c1,c2 with
| (DRel, DRel | DSort, DSort | DNil, DNil | DRef _, DRef _
| DInt _, DInt _ | DFloat _, DFloat _) as cc ->
let (c,_) = cc in c
| DCtx (c1,t1), DCtx (c2,t2) -> DCtx (f c1 c2, f t1 t2)
| DLambda (t1,c1), DLambda (t2,c2) -> DLambda (f t1 t2, f c1 c2)
| DApp (t1,u1), DApp (t2,u2) -> DApp (f t1 t2,f u1 u2)
| DCase (ci,p1,c1,bl1), DCase (_,p2,c2,bl2) ->
DCase (ci, f p1 p2, f c1 c2, Array.map2 f bl1 bl2)
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
DFix (ia,i,Array.map2 f ta1 ta2,Array.map2 f ca1 ca2)
| DCoFix (i,ta1,ca1), DCoFix (_,ta2,ca2) ->
DCoFix (i,Array.map2 f ta1 ta2,Array.map2 f ca1 ca2)
| DArray(t1,def1,ty1), DArray(t2,def2,ty2) ->
DArray(Array.map2 f t1 t2, f def1 def2, f ty1 ty2)
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
DCons ((f t1 t2,Option.lift2 f topt1 topt2), f u1 u2)
| (DRel | DNil | DSort | DRef _ | DCtx _ | DApp _ | DLambda _ | DCase _
| DFix _ | DCoFix _ | DCons _ | DInt _ | DFloat _ | DArray _), _ -> assert false
let terminal = function
| (DRel | DSort | DNil | DRef _ | DInt _ | DFloat _) -> true
| DLambda _ | DApp _ | DCase _ | DFix _ | DCoFix _ | DCtx _ | DCons _ | DArray _ ->
false
let compare t1 t2 = compare dummy_cmp t1 t2
end
(*
* Terms discrimination nets
* Uses the general dnet datatype on DTerm.t
* (here you can restart reading)
*)
(*
* Construction of the module
*)
module type IDENT =
sig
type t
val compare : t -> t -> int
val subst : substitution -> t -> t
val constr_of : t -> constr
end
module type OPT =
sig
val reduce : constr -> constr
val direction : bool
end
module Make =
functor (Ident : IDENT) ->
functor (Opt : OPT) ->
struct
module TDnet : Dnet.S with type ident=Ident.t
and type 'a structure = 'a DTerm.t
and type meta = int
= Dnet.Make(DTerm)(Ident)(Int)
type t = TDnet.t
type ident = TDnet.ident
(** We will freshen metas on the fly, to cope with the implementation defect
of Term_dnet which requires metas to be all distinct. *)
let fresh_meta =
let index = ref 0 in
fun () ->
let ans = !index in
let () = index := succ ans in
ans
open DTerm
open TDnet
let pat_of_constr c : term_pattern =
let open GlobRef in
(* To each evar we associate a unique identifier. *)
let metas = ref Evar.Map.empty in
let rec pat_of_constr c = match Constr.kind c with
| Rel _ -> Term DRel
| Sort _ -> Term DSort
| Var i -> Term (DRef (VarRef i))
| Const (c,u) -> Term (DRef (ConstRef c))
| Ind (i,u) -> Term (DRef (IndRef i))
| Construct (c,u)-> Term (DRef (ConstructRef c))
| Meta _ -> assert false
| Evar (i,_) ->
let meta =
try Evar.Map.find i !metas
with Not_found ->
let meta = fresh_meta () in
let () = metas := Evar.Map.add i meta !metas in
meta
in
Meta meta
| Case (ci,u1,pms1,c1,_iv,c2,ca) ->
let f_ctx (_, p) = pat_of_constr p in
Term(DCase(ci,f_ctx c1,pat_of_constr c2,Array.map f_ctx ca))
| Fix ((ia,i),(_,ta,ca)) ->
Term(DFix(ia,i,Array.map pat_of_constr ta, Array.map pat_of_constr ca))
| CoFix (i,(_,ta,ca)) ->
Term(DCoFix(i,Array.map pat_of_constr ta,Array.map pat_of_constr ca))
| Cast (c,_,_) -> pat_of_constr c
| Lambda (_,t,c) -> Term(DLambda (pat_of_constr t, pat_of_constr c))
| (Prod _ | LetIn _) ->
let (ctx,c) = ctx_of_constr (Term DNil) c in Term (DCtx (ctx,c))
| App (f,ca) ->
Array.fold_left (fun c a -> Term (DApp (c,a)))
(pat_of_constr f) (Array.map pat_of_constr ca)
| Proj (p,c) ->
Term (DApp (Term (DRef (ConstRef (Projection.constant p))), pat_of_constr c))
| Int i -> Term (DInt i)
| Float f -> Term (DFloat f)
| Array (_u,t,def,ty) ->
Term (DArray (Array.map pat_of_constr t, pat_of_constr def, pat_of_constr ty))
and ctx_of_constr ctx c = match Constr.kind c with
| Prod (_,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t,None),ctx))) c
| LetIn(_,d,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t, Some (pat_of_constr d)),ctx))) c
| _ -> ctx,pat_of_constr c
in
pat_of_constr c
let empty_ctx : term_pattern -> term_pattern = function
| Meta _ as c -> c
| Term (DCtx(_,_)) as c -> c
| c -> Term (DCtx (Term DNil, c))
(*
* Basic primitives
*)
let empty = TDnet.empty
let subst s t =
let sleaf id = Ident.subst s id in
let snode = function
| DTerm.DRef gr -> DTerm.DRef (fst (subst_global s gr))
| n -> n in
TDnet.map sleaf snode t
let union = TDnet.union
let add (c:constr) (id:Ident.t) (dn:t) =
let c = Opt.reduce c in
let c = empty_ctx (pat_of_constr c) in
TDnet.add dn c id
let new_meta () = Meta (fresh_meta ())
let rec remove_cap : term_pattern -> term_pattern = function
| Term (DCons (t,u)) -> Term (DCons (t,remove_cap u))
| Term DNil -> new_meta()
| Meta _ as m -> m
| _ -> assert false
let under_prod : term_pattern -> term_pattern = function
| Term (DCtx (t,u)) -> Term (DCtx (remove_cap t,u))
| Meta m -> Term (DCtx(new_meta(), Meta m))
| _ -> assert false
(* debug *)
(* let rec pr_term_pattern p =
(fun pr_t -> function
| Term t -> pr_t t
| Meta m -> str"["++Pp.int (Obj.magic m)++str"]"
) (pr_dconstr pr_term_pattern) p*)
let search_pat cpat dpat dn =
let whole_c = EConstr.of_constr cpat in
(* if we are at the root, add an empty context *)
let dpat = under_prod (empty_ctx dpat) in
TDnet.Idset.fold
(fun id acc ->
let c_id = Opt.reduce (Ident.constr_of id) in
let c_id = EConstr.of_constr c_id in
let (ctx,wc) =
try Termops.align_prod_letin Evd.empty whole_c c_id (* FIXME *)
with Invalid_argument _ -> [],c_id in
let wc,whole_c = if Opt.direction then whole_c,wc else wc,whole_c in
try
let _ = Termops.filtering Evd.empty ctx Reduction.CUMUL wc whole_c in
id :: acc
with Termops.CannotFilter -> (* msgnl(str"recon "++Termops.print_constr_env (Global.env()) wc); *) acc
) (TDnet.find_match dpat dn) []
(*
* High-level primitives describing specific search problems
*)
let search_pattern dn pat =
let pat = Opt.reduce pat in
search_pat pat (empty_ctx (pat_of_constr pat)) dn
let find_all dn = Idset.elements (TDnet.find_all dn)
let map f dn = TDnet.map f (fun x -> x) dn
let refresh_metas dn =
let new_metas = ref Int.Map.empty in
let refresh_one_meta i =
try Int.Map.find i !new_metas
with Not_found ->
let new_meta = fresh_meta () in
let () = new_metas := Int.Map.add i new_meta !new_metas in
new_meta
in
TDnet.map_metas refresh_one_meta dn
end
module type S =
sig
type t
type ident
val empty : t
val add : constr -> ident -> t -> t
val union : t -> t -> t
val subst : substitution -> t -> t
val search_pattern : t -> constr -> ident list
val find_all : t -> ident list
val map : (ident -> ident) -> t -> t
val refresh_metas : t -> t
end
|