File: bool_lib.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (254 lines) | stat: -rw-r--r-- 7,020 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
Require Import Ltac2.Ltac2.
Require Import Ltac2.Bool.


(** * Lazy eval tests *)

Require Import Ltac2.Notations.

(** ** Lazy and tests *)

Example lazy_and_true_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true && true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_true_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (true && false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_false_throw : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false && Control.throw_invalid_argument "bad") then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_true_true_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true && true && true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_true_false_throw : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (true && false && Control.throw_invalid_argument "bad") then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_false_throw_throw : exists n, n=0.
Proof.
  (* This shows that && is left recursive *)
  exists ltac2:(let val:= if (false && Control.throw_invalid_argument "bad" && Control.throw_invalid_argument "bad") then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_fun_arg : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (Bool.equal true true && Bool.equal false false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

(** ** Lazy or tests *)

Example lazy_or_false_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false || false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_false_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (false || true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_true_throw : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true || Control.throw_invalid_argument "bad") then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_false_false_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false || false || false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_false_true_throw : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (false || true || Control.throw_invalid_argument "bad") then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_true_throw_throw : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true || Control.throw_invalid_argument "bad" || Control.throw_invalid_argument "bad") then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_fun_arg : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (Bool.equal true true || Bool.equal true false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

(** ** Lazy or with and tests *)

Example lazy_or_and_true_true_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true || true && true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_true_true_false : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true || true && false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_true_false_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true || false && true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_true_false_false : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true || false && false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_false_true_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (false || true && true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_false_true_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false || true && false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_false_false_true : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false || false && true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_or_and_false_false_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false || false && false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

(* Lazy and with or tests *)

Example lazy_and_or_true_true_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true && true || true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_true_true_false : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true && true || false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_true_false_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (true && false || true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_true_false_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (true && false || false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_false_true_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (false && true || true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_false_true_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false && true || false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_false_false_true : exists n, n=1.
Proof.
  exists ltac2:(let val:= if (false && false || true) then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example lazy_and_or_false_false_false : exists n, n=0.
Proof.
  exists ltac2:(let val:= if (false && false || false) then '1 else '0 in exact $val).
  reflexivity.
Qed.

(** * if then else tests *)

(* these tests are from teh time when if was a notation, but it doesn't hurt to keep them *)

Example if_then_else_true : exists n, n=1.
Proof.
  exists ltac2:(let val:=if true then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_false : exists n, n=0.
Proof.
  exists ltac2:(let val:=if false then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_nested_true : exists n, n=2.
Proof.
  exists ltac2:(let val:=if true then if true then '2 else '1 else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_nested_false : exists n, n=0.
Proof.
  exists ltac2:(let val:=if false then '2 else if false then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_match_cond : exists n, n=0.
Proof.
  exists ltac2:(let val:=if match true with true => false | false => true end then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_match_true : exists n, n=2.
Proof.
  exists ltac2:(let val:=if true then match true with true => '2 | false => '1 end else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_match_false : exists n, n=0.
Proof.
  exists ltac2:(let val:=if false then '2 else match false with true => '1 | false => '0 end in exact $val).
  reflexivity.
Qed.

Example if_then_else_lazy_and : exists n, n=1.
Proof.
  exists ltac2:(let val:=if true && true then '1 else '0 in exact $val).
  reflexivity.
Qed.

Example if_then_else_lazy_or : exists n, n=1.
Proof.
  exists ltac2:(let val:=if true || true then '1 else '0 in exact $val).
  reflexivity.
Qed.