File: non_lin_ci.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (278 lines) | stat: -rw-r--r-- 5,812 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
Require Import ZArith.
Require Import Lia Psatz.
Open Scope Z_scope.




(* From fiat-crypto Generalized.v *)


Goal forall (x1 : Z) (x2 : Z) (x3 : Z) (x4 : Z) (x5 : Z) (x6 : Z) (x7 : Z) (x8 : Z) (x9 : Z) (x10 : Z) (x11 : Z) (x12 : Z) (x13 : Z) (x14 : Z) (x15 : Z) (x16 : Z) (x17 : Z) (x18 : Z)
(H0 : -1 + -x1^2 + x3*x5 + x1^2*x2 + -x2*x3*x4 >= 0)
(H1 : -1 + x4 >= 0)
(H2 : -1 + x6 >= 0)
(H3 : -1 + -x4 + x1 >= 0)
(H4 : x3 + -x7 = 0)
(H5 : x8 >= 0)
(H6 : -1 + x4 >= 0)
(H7 : x9 >= 0)
(H8 : -x8 + x10 >= 0)
(H9 : -1 + x1^2 + -x9 >= 0)
(H10 : x4 + -x11 >= 0)
(H11 : -x3 + x1*x12 + -x12*x13 >= 0)
(H12 : -1 + -x9 + x1*x4 >= 0)
(H13 : -1 + x4 + -x13 >= 0)
(H14 : x13 >= 0)
(H15 : -1 + x5 >= 0)
(H16 : -1 + x1 + -x2 >= 0)
(H17 : x1^2 + -x13 + -x3*x4 = 0)
(H18 : -1 + x12 + -x14 >= 0)
(H19 : x14 >= 0)
(H20 : x1 + -x14 + -x5*x12 = 0)
(H21 : -1 + x4 + -x15 >= 0)
(H22 : x15 >= 0)
(H23 : x9 + -x15 + -x2*x4 = 0)
(H24 : -x9 + x16 + x4*x17 = 0)
(H25 : x17 + -x18 = 0)
, False
.
Proof.
  intros.
  Time nia.
Qed.

Goal
  forall (x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
  x14 x15 x16 : Z)
         (H6 : x8 < x10 ^ 2 * x15 ^ 2 + 2 * x10 * x15 * x14 + x14 ^ 2)
         (H7 : 0 <= x8)
         (H12 : 0 <= x14)
         (H0 : x8 = x15 * x11 + x9)
         (H14 : x10 ^ 2 * x15 + x10 * x14 < x16)
         (H17 : x16 <= 0)
         (H15 : 0 <= x9)
         (H18 : x9 < x15)
         (H16 : 0 <= x12)
         (H19 : x12 < (x10 * x15 + x14) * x10)
  , False.
Proof.
  intros.
  Time nia.
Qed.


(* From fiat-crypto Toplevel1.v *)


Goal forall
    (x1 x2 x3 x4 x5 x7 : Z)
    (H0 : x1 + x2 - x3 = 0) (* substitute x1, nothing happens *)
    (H1 : 2 * x2 - x4 - 1 >= 0)
    (H2 : - x2 + x4 >= 0)
    (H3 : 2 * x2 - x5 - 1 >= 0)
    (H5 : x2 - 4 >= 0)
    (H7 : - x2 * x7 + x4 * x5 >= 0)
    (H6 : x2 * x7 + x2 - x4 * x5 - 1 >= 0)
    (H9 : x7 - x2 ^ 2 >= 0), (* x2^2 is *visibly* positive *)
  False.
Proof.
  intros.
  nia.
Qed.

Goal forall
    (x1 x2 x3 x4 x5 x7 : Z)
    (H0 : x2 + x1 - x3 = 0) (* substitute x2= x3 -x1 ... *)
    (H1 : 2 * x2 - x4 - 1 >= 0)
    (H2 : - x2 + x4 >= 0)
    (H3 : 2 * x2 - x5 - 1 >= 0)
    (H5 : x2 - 4 >= 0)
    (H7 : - x2 * x7 + x4 * x5 >= 0)
    (H6 : x2 * x7 + x2 - x4 * x5 - 1 >= 0)
    (H9 : x7 - x2 ^ 2 >= 0), (* (x3 - x1)^2 is not visibly positive *)
  False.
Proof.
  intros.
  nia.
Qed.

(* From bedrock2 FlatToRisc.v *)

(* Variant of the following - omega fails (bad linearisation?)*)
Goal forall
    (PXLEN XLEN r : Z)
    (q q0 r0 a : Z)
    (H3 : 4 * a = 4 * PXLEN * q0 + (4 * q + r))
    (H6 : 0 <= 4 * q + r)
    (H7 : 4 * q + r < 4 * PXLEN)
    (H8 : r <= 3)
    (H4 : r >= 1),
  False.
Proof.
  intros.
  Time lia.
Qed.

Goal forall
    (PXLEN XLEN r : Z)
    (q q0 r0 a : Z)
    (H3 : 4 * a = 4 * PXLEN * q0 + (4 * q + r))
    (H6 : 0 <= 4 * q + r)
    (H7 : 4 * q + r < 4 * PXLEN)
    (H8 : r <= 3)
    (H4 : r >= 1),
  False.
Proof.
  intros.
  Time nia.
Qed.


(** Very slow *)
Goal forall
    (XLEN r : Z)
    (H : 4 < 2 ^ XLEN)
    (H0 : 8 <= XLEN)
    (q q0 r0 a : Z)
    (H3 : 4 * a = 4 * 2 ^ (XLEN - 2) * q0 + r0)
    (H5 : r0 = 4 * q + r)
    (H6 : 0 <= r0)
    (H7 : r0 < 4 * 2 ^ (XLEN - 2))
    (H2 : 0 <= r)
    (H8 : r < 4)
    (H4 : r > 0)
    (H9 : 0 < 2 ^ (XLEN - 2)),
    False.
Proof.
  intros.
  Time nia.
Qed.

Goal forall
    (XLEN r : Z)
    (R : r > 0 \/ r < 0)
    (H : 4 < 2 ^ XLEN)
    (H0 : 8 <= XLEN)
    (H1 : ~ (0 <= XLEN - 2) \/ 0 < 2 ^ (XLEN - 2))
     (q  q0 r0 a : Z)
    (H2 : 0 <= r0 < 4 * 2 ^ (XLEN - 2))
    (H3 : 4 *  a = 4 * 2 ^ (XLEN - 2) * q0 + r0)
    (H4 : 0 <= r < 4)
    (H5 : r0 = 4 * q + r),
    False.
Proof.
  intros.
  Time nia.
Qed.

Goal forall
    (XLEN r : Z)
    (R : r > 0 \/ r < 0)
    (H : 4 < 2 ^ XLEN)
    (H0 : 8 <= XLEN)
    (H1 : ~ (0 <= XLEN - 2) \/ 0 < 2 ^ (XLEN - 2))
     (q  q0 r0 a : Z)
    (H2 : 0 <= r0 < 4 * 2 ^ (XLEN - 2))
    (H3 : 4 *  a = 4 * 2 ^ (XLEN - 2) * q0 + r0)
    (H4 : 0 <= r < 4)
    (H5 : r0 = 4 * q + r),
    False.
Proof.
  intros.
  intuition idtac.
  Time   all:nia.
Qed.



Goal forall
    (XLEN a q q0 z : Z)
    (HR : 4 * a - 4 * z * q0 - 4 * q > 0)
    (H0 : 8 <= XLEN)
    (H1 : 0 < z)
    (H : 0 <= 4 * a - 4 * z * q0 - 4 * q)
    (H3 : 4 * a - 4 * z * q0 - 4 * q < 4)
    (H4 : 4 * a - 4 * z * q0 < 4 * z),
  False.
Proof.
  intros.
  Time nia.
Qed.



(* From fiat-crypto Modulo.v *)

Goal forall  (b : Z)
             (H : 0 <> b)
             (c  r q1 q2 r2 : Z)
             (H2 : r2 < c)
             (q0 : Z)
             (H7 : r < b)
             (H5 : 0 <= r)
             (H6 : r < b)
             (H12 : 0 < c)
             (H13 : 0 <> c)
             (H0 : 0 <> c * b)
             (H1 : 0 <= r2)
             (H14 : 0 <= q0)
             (H9 : c * q1 + q0 = c * q2 + r2)
             (H4 : 0 <= b * q0 + - r)
             (H10 : b * q0 + - r < c * b),
  q1 = q2.
Proof.
  intros.
  Fail nia.
Abort.


(* From Sozeau's plugin Equations *)


Goal forall x p2 p1 m,
    x <> 0%Z  ->
    (Z.abs (x *  p2 ) > Z.abs (Z.abs p1 + Z.abs m))%Z ->
    (Z.abs (x * (p1 + x * p2 )) > Z.abs m)%Z.
Proof.
  intros.
  Time nia.
Qed.


Goal forall z z0 z1 m
            (Heqz0 : z0 = ((1 + z) * z1)%Z)
            (H0 : (0 <= m)%Z)
            (H3 : z = m)
            (H1 : (0 <= z0)%Z)
            (H4 : z1 = z0)
            (H2 : (z1 > 0)%Z),
  (z1 > z)%Z.
Proof.
  intros.
  Time nia.
Qed.




(* Known issues.

  - Found proof may violate  Proof using ...
    There may be a compliant proof but lia has no way to know.
    Proofs could be optimised to minimise the number of hypotheses,
    but this seems to costly.
Section S.
  Variable z z0 z1 z2 : Z.
  Variable H2 : 0 <= z2.
  Variable H3 : z2 < z1.
  Variable H4 : 0 <= z0.
  Variable H5 : z0 < z1.
  Variable H6 : z = - z2.

  Goal -z1 -z2  >= 0 -> False.
  Proof using  H2 H3  H6.
    intros.
    lia.
  Qed.
*)