File: zomicron.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (249 lines) | stat: -rw-r--r-- 4,828 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
Require Import ZArith.
Require Import Lia.

Section S.
  Variables H1 H2 H3 H4 : True.

  Lemma bug_9848 : True.
  Proof using.
    lia.
  Qed.
End S.

Lemma concl_in_Type : forall   (k : nat)
             (H : (k < 0)%nat) (F : k < 0 -> Type),
    F H.
Proof.
  intros.
  lia.
Qed.

Lemma bug_10707 : forall
    (T : Type)
    (t : nat -> Type)
    (k : nat)
    (default : T)
    (arr : t 0 -> T)
    (H : (k < 0)%nat) of_nat_lt,
 match k with
 | 0 | _ => default
 end = arr (of_nat_lt H).
Proof.
  intros.
  lia.
Qed.

Axiom decompose_nat : nat -> nat -> nat.
Axiom inleft : forall {P}, {m : nat & P m} -> nat.
Axiom foo : nat.

Lemma bug_7886 : forall (x x0 : nat)
                        (e : 0 = x0 + S x)
                        (H : decompose_nat x 0 = inleft (existT (fun m : nat => 0 = m + S x) x0 e))
                        (x1 : nat)
                        (e0 : 0 = x1 + S (S x))
                        (H1 : decompose_nat (S x) 0 = inleft (existT (fun m : nat => 0 = m + S (S x)) x1 e0)),
    False.
Proof.
  intros.
  lia.
Qed.


Lemma bug_8898 : forall (p : 0 < 0) (H: p = p), False.
Proof.
  intros p H.
  lia.
Qed.



Open Scope Z_scope.

Lemma two_x_eq_1 : forall x, 2 * x = 1 -> False.
Proof.
  intros.
  lia.
Qed.


Lemma two_x_y_eq_1 : forall x y, 2 * x + 2 * y = 1 -> False.
Proof.
  intros. 
  lia.
Qed.

Lemma two_x_y_z_eq_1 : forall x y z, 2 * x + 2 * y + 2 * z= 1 -> False.
Proof.
  intros.
  lia.
Qed.

Lemma unused : forall x y, y >= 0 /\ x = 1 -> x = 1.
Proof.
  intros x y.
  lia.
Qed.

Lemma omega_nightmare : forall x y, 27 <= 11 * x + 13 * y <= 45 ->  -10 <= 7 * x - 9 * y <= 4 -> False.
Proof.
  intros ; intuition auto.
  lia.
Qed.

Lemma compact_proof : forall z,
    (z < 0) ->
    (z >= 0) ->
    (0 >= z \/ 0 < z) -> False.
Proof.
  intros.
  lia.
Qed.

Lemma dummy_ex : exists (x:Z),  x = x.
Proof.
  eexists.
  lia.
  Unshelve.
  exact Z0.
Qed.

Lemma unused_concl : forall x,
    False -> x > 0 -> x < 0.
Proof.
  intro.
  lia.
Qed.

Lemma unused_concl_match : forall (x:Z),
    False -> match x with
             | Z0 => True
             | _ => x = x
             end.
Proof.
  intros.
  lia.
Qed.

Lemma fresh : forall (__arith : Prop),
    __arith -> True.
Proof.
  intros.
  lia.
Qed.


Lemma fresh1 : forall (__p1 __p2 __p3 __p5:Prop) (x y z:Z), (x = 0 /\ y = 0) /\ z = 0 -> x = 0.
Proof.
  intros.
  lia.
Qed.


Class Foo {x : Z} := { T : Type ; dec : T -> Z }.
Goal forall bound {F : @Foo bound} (x y : T), 0 <= dec x < bound -> 0 <= dec y 
                                                                    < bound -> dec x + dec y >= bound -> dec x + dec y < 2 * bound.
Proof.
  intros.
  lia.
Qed.

Section S.
  Variables x y: Z.
  Variables XGe : x >= 0.
  Variables YGt : y > 0.
  Variables YLt : y < 0.

  Goal False.
  Proof using - XGe.
    lia.
  Qed.

  Goal False.
  Proof using YGt YLt x y.
    lia.
  Qed.

End S.

Section S.
  Variable x y: Z.
  Variable H1 : 1 > 0 -> x = 1.
  Variable H2 : x = y.

  Goal x = y.
  Proof using H2.
    lia.
  Qed.

End S.

(*  Bug 5073 *)
Lemma opp_eq_0_iff a : -a = 0 <-> a = 0.
Proof.
  lia.
Qed.

Lemma ex_pos : forall x, exists z t, x = z - t /\ z >= 0 /\ t >= 0.
Proof.
  intros.
  destruct (dec_Zge x 0).
  exists x, 0.
  lia.
  exists 0, (-x).
  lia.
Qed.

Goal forall
    (b q r : Z)
    (H : b * q + r <= 0)
    (H5 : - b < r)
    (H6 : r <= 0)
    (H2 : 0 <= b),
    b = 0 -> False.
Proof.
  intros b q r.
  lia.
Qed.


Section S.
  (* From bedrock2, used to be slow *)
  Variables (x3 q r q2 r3 : Z)
            (H : 2 ^ 2 <> 0 -> r3 + 3 = 2 ^ 2 * q + r)
            (H0 : 0 < 2 ^ 2 -> 0 <= r < 2 ^ 2)
            (H1 : 2 ^ 2 < 0 -> 2 ^ 2 < r <= 0)
            (H2 : 2 ^ 2 = 0 -> q = 0)
            (H3 : 2 ^ 2 = 0 -> r = 0)
            (q0 r0 : Z)
            (H4 : 4 <> 0 -> 0 = 4 * q0 + r0)
            (H5 : 0 < 4 -> 0 <= r0 < 4)
            (H6 : 4 < 0 -> 4 < r0 <= 0)
            (H7 : 4 = 0 -> q0 = 0)
            (H8 : 4 = 0 -> r0 = 0)
            (q1 r1 : Z)
            (H9 : 4 <> 0 -> q + q + (q + q) = 4 * q1 + r1)
            (H10 : 0 < 4 -> 0 <= r1 < 4)
            (H11 : 4 < 0 -> 4 < r1 <= 0)
            (H12 : 4 = 0 -> q1 = 0)
            (H13 : 4 = 0 -> r1 = 0)
            (r2 : Z)
            (H14 : 2 ^ 16 <> 0 ->  x3 = 2 ^ 16 * q2 + r2)
            (H15 : 0 < 2 ^ 16 -> 0 <= r2 < 2 ^ 16)
            (H16 : 2 ^ 16 < 0 -> 2 ^ 16 < r2 <= 0)
            (H17 : 2 ^ 16 = 0 -> q2 = 0)
            (H18 : 2 ^ 16 = 0 -> r2 = 0)
            (q3 : Z)
            (H19 : 16383 + 1 <> 0 -> q2 = (16383 + 1) * q3 + r3)
            (H20 : 0 < 16383 + 1 -> 0 <= r3 < 16383 + 1)
            (H21 : 16383 + 1 < 0 -> 16383 + 1 < r3 <= 0)
            (H22 : 16383 + 1 = 0 -> q3 = 0)
            (H23 : 16383 + 1 = 0 -> r3 = 0).

  Goal r0 = r1.
  Proof using H10 H9 H5 H4.
    intros.
    lia.
  Qed.

End S.