1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
Require Import ZArith.
Require Import Lia.
Section S.
Variables H1 H2 H3 H4 : True.
Lemma bug_9848 : True.
Proof using.
lia.
Qed.
End S.
Lemma concl_in_Type : forall (k : nat)
(H : (k < 0)%nat) (F : k < 0 -> Type),
F H.
Proof.
intros.
lia.
Qed.
Lemma bug_10707 : forall
(T : Type)
(t : nat -> Type)
(k : nat)
(default : T)
(arr : t 0 -> T)
(H : (k < 0)%nat) of_nat_lt,
match k with
| 0 | _ => default
end = arr (of_nat_lt H).
Proof.
intros.
lia.
Qed.
Axiom decompose_nat : nat -> nat -> nat.
Axiom inleft : forall {P}, {m : nat & P m} -> nat.
Axiom foo : nat.
Lemma bug_7886 : forall (x x0 : nat)
(e : 0 = x0 + S x)
(H : decompose_nat x 0 = inleft (existT (fun m : nat => 0 = m + S x) x0 e))
(x1 : nat)
(e0 : 0 = x1 + S (S x))
(H1 : decompose_nat (S x) 0 = inleft (existT (fun m : nat => 0 = m + S (S x)) x1 e0)),
False.
Proof.
intros.
lia.
Qed.
Lemma bug_8898 : forall (p : 0 < 0) (H: p = p), False.
Proof.
intros p H.
lia.
Qed.
Open Scope Z_scope.
Lemma two_x_eq_1 : forall x, 2 * x = 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma two_x_y_eq_1 : forall x y, 2 * x + 2 * y = 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma two_x_y_z_eq_1 : forall x y z, 2 * x + 2 * y + 2 * z= 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma unused : forall x y, y >= 0 /\ x = 1 -> x = 1.
Proof.
intros x y.
lia.
Qed.
Lemma omega_nightmare : forall x y, 27 <= 11 * x + 13 * y <= 45 -> -10 <= 7 * x - 9 * y <= 4 -> False.
Proof.
intros ; intuition auto.
lia.
Qed.
Lemma compact_proof : forall z,
(z < 0) ->
(z >= 0) ->
(0 >= z \/ 0 < z) -> False.
Proof.
intros.
lia.
Qed.
Lemma dummy_ex : exists (x:Z), x = x.
Proof.
eexists.
lia.
Unshelve.
exact Z0.
Qed.
Lemma unused_concl : forall x,
False -> x > 0 -> x < 0.
Proof.
intro.
lia.
Qed.
Lemma unused_concl_match : forall (x:Z),
False -> match x with
| Z0 => True
| _ => x = x
end.
Proof.
intros.
lia.
Qed.
Lemma fresh : forall (__arith : Prop),
__arith -> True.
Proof.
intros.
lia.
Qed.
Lemma fresh1 : forall (__p1 __p2 __p3 __p5:Prop) (x y z:Z), (x = 0 /\ y = 0) /\ z = 0 -> x = 0.
Proof.
intros.
lia.
Qed.
Class Foo {x : Z} := { T : Type ; dec : T -> Z }.
Goal forall bound {F : @Foo bound} (x y : T), 0 <= dec x < bound -> 0 <= dec y
< bound -> dec x + dec y >= bound -> dec x + dec y < 2 * bound.
Proof.
intros.
lia.
Qed.
Section S.
Variables x y: Z.
Variables XGe : x >= 0.
Variables YGt : y > 0.
Variables YLt : y < 0.
Goal False.
Proof using - XGe.
lia.
Qed.
Goal False.
Proof using YGt YLt x y.
lia.
Qed.
End S.
Section S.
Variable x y: Z.
Variable H1 : 1 > 0 -> x = 1.
Variable H2 : x = y.
Goal x = y.
Proof using H2.
lia.
Qed.
End S.
(* Bug 5073 *)
Lemma opp_eq_0_iff a : -a = 0 <-> a = 0.
Proof.
lia.
Qed.
Lemma ex_pos : forall x, exists z t, x = z - t /\ z >= 0 /\ t >= 0.
Proof.
intros.
destruct (dec_Zge x 0).
exists x, 0.
lia.
exists 0, (-x).
lia.
Qed.
Goal forall
(b q r : Z)
(H : b * q + r <= 0)
(H5 : - b < r)
(H6 : r <= 0)
(H2 : 0 <= b),
b = 0 -> False.
Proof.
intros b q r.
lia.
Qed.
Section S.
(* From bedrock2, used to be slow *)
Variables (x3 q r q2 r3 : Z)
(H : 2 ^ 2 <> 0 -> r3 + 3 = 2 ^ 2 * q + r)
(H0 : 0 < 2 ^ 2 -> 0 <= r < 2 ^ 2)
(H1 : 2 ^ 2 < 0 -> 2 ^ 2 < r <= 0)
(H2 : 2 ^ 2 = 0 -> q = 0)
(H3 : 2 ^ 2 = 0 -> r = 0)
(q0 r0 : Z)
(H4 : 4 <> 0 -> 0 = 4 * q0 + r0)
(H5 : 0 < 4 -> 0 <= r0 < 4)
(H6 : 4 < 0 -> 4 < r0 <= 0)
(H7 : 4 = 0 -> q0 = 0)
(H8 : 4 = 0 -> r0 = 0)
(q1 r1 : Z)
(H9 : 4 <> 0 -> q + q + (q + q) = 4 * q1 + r1)
(H10 : 0 < 4 -> 0 <= r1 < 4)
(H11 : 4 < 0 -> 4 < r1 <= 0)
(H12 : 4 = 0 -> q1 = 0)
(H13 : 4 = 0 -> r1 = 0)
(r2 : Z)
(H14 : 2 ^ 16 <> 0 -> x3 = 2 ^ 16 * q2 + r2)
(H15 : 0 < 2 ^ 16 -> 0 <= r2 < 2 ^ 16)
(H16 : 2 ^ 16 < 0 -> 2 ^ 16 < r2 <= 0)
(H17 : 2 ^ 16 = 0 -> q2 = 0)
(H18 : 2 ^ 16 = 0 -> r2 = 0)
(q3 : Z)
(H19 : 16383 + 1 <> 0 -> q2 = (16383 + 1) * q3 + r3)
(H20 : 0 < 16383 + 1 -> 0 <= r3 < 16383 + 1)
(H21 : 16383 + 1 < 0 -> 16383 + 1 < r3 <= 0)
(H22 : 16383 + 1 = 0 -> q3 = 0)
(H23 : 16383 + 1 = 0 -> r3 = 0).
Goal r0 = r1.
Proof using H10 H9 H5 H4.
intros.
lia.
Qed.
End S.
|