1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
Set Universe Polymorphism.
(** Tests for module subtyping of polymorphic terms *)
Module Type S.
Section Foo.
Universes i j.
Constraint i <= j.
Parameter foo : Type@{i} -> Type@{j}.
End Foo.
End S.
(** Same constraints *)
Module OK_1.
Definition foo@{i j} (A : Type@{i}) : Type@{j} := A.
End OK_1.
Module OK_1_Test : S := OK_1.
(** More general constraints *)
Module OK_2.
Inductive X@{i} : Type@{i} :=.
Definition foo@{i j} (A : Type@{i}) : Type@{j} := X@{j}.
End OK_2.
Module OK_2_Test : S := OK_2.
(** Wrong instance length *)
Module KO_1.
Definition foo@{i} (A : Type@{i}) : Type@{i} := A.
End KO_1.
Fail Module KO_Test_1 : S := KO_1.
(** Less general constraints *)
Module KO_2.
Section Foo.
Universe i j.
Constraint i < j.
Definition foo (A : Type@{i}) : Type@{j} := A.
End Foo.
End KO_2.
Fail Module KO_Test_2 : S := KO_2.
(** Less general constraints *)
Module KO_3.
Section Foo.
Universe i j.
Constraint i = j.
Definition foo (A : Type@{i}) : Type@{j} := A.
End Foo.
End KO_3.
Fail Module KO_Test_3 : S := KO_3.
|