1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Some code from mathcomp needed in order to run ssr_* tests *)
Require Import ssreflect ssrfun ssrbool.
Global Set SsrOldRewriteGoalsOrder.
Global Set Asymmetric Patterns.
Global Set Bullet Behavior "None".
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* eqtype ---------------------------------------------------------- *)
Module Equality.
Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y).
Structure mixin_of T := Mixin {op : rel T; _ : axiom op}.
Notation class_of := mixin_of (only parsing).
Section ClassDef.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c _ := cT return class_of cT in c.
Definition pack c := @Pack T c T.
Definition clone := fun c & cT -> T & phant_id (pack c) cT => pack c.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Notation eqType := type.
Notation EqMixin := Mixin.
Notation EqType T m := (@pack T m).
Notation "[ 'eqMixin' 'of' T ]" := (class _ : mixin_of T)
(at level 0, format "[ 'eqMixin' 'of' T ]") : form_scope.
Notation "[ 'eqType' 'of' T 'for' C ]" := (@clone T C _ idfun id)
(at level 0, format "[ 'eqType' 'of' T 'for' C ]") : form_scope.
Notation "[ 'eqType' 'of' T ]" := (@clone T _ _ id id)
(at level 0, format "[ 'eqType' 'of' T ]") : form_scope.
End Exports.
End Equality.
Export Equality.Exports.
Definition eq_op T := Equality.op (Equality.class T).
Lemma eqE T x : eq_op x = Equality.op (Equality.class T) x.
Proof. by []. Qed.
Lemma eqP T : Equality.axiom (@eq_op T).
Proof. by case: T => ? []. Qed.
Arguments eqP {T x y}.
Delimit Scope eq_scope with EQ.
Open Scope eq_scope.
Notation "x == y" := (eq_op x y)
(at level 70, no associativity) : bool_scope.
Notation "x == y :> T" := ((x : T) == (y : T))
(at level 70, y at next level) : bool_scope.
Notation "x != y" := (~~ (x == y))
(at level 70, no associativity) : bool_scope.
Notation "x != y :> T" := (~~ (x == y :> T))
(at level 70, y at next level) : bool_scope.
Notation "x =P y" := (eqP : reflect (x = y) (x == y))
(at level 70, no associativity) : eq_scope.
Notation "x =P y :> T" := (eqP : reflect (x = y :> T) (x == y :> T))
(at level 70, y at next level, no associativity) : eq_scope.
Prenex Implicits eq_op eqP.
Lemma eq_refl (T : eqType) (x : T) : x == x. Proof. exact/eqP. Qed.
Notation eqxx := eq_refl.
Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x).
Proof. exact/eqP/eqP. Qed.
Hint Resolve eq_refl eq_sym.
Definition eqb b := addb (~~ b).
Lemma eqbP : Equality.axiom eqb.
Proof. by do 2!case; constructor. Qed.
Canonical bool_eqMixin := EqMixin eqbP.
Canonical bool_eqType := Eval hnf in EqType bool bool_eqMixin.
Section ProdEqType.
Variable T1 T2 : eqType.
Definition pair_eq := [rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)].
Lemma pair_eqP : Equality.axiom pair_eq.
Proof.
move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=.
by do 2!move/eqP->.
Qed.
Definition prod_eqMixin := EqMixin pair_eqP.
Canonical prod_eqType := Eval hnf in EqType (T1 * T2) prod_eqMixin.
End ProdEqType.
Section OptionEqType.
Variable T : eqType.
Definition opt_eq (u v : option T) : bool :=
oapp (fun x => oapp (eq_op x) false v) (~~ v) u.
Lemma opt_eqP : Equality.axiom opt_eq.
Proof.
case=> [x|] [y|] /=; by [constructor | apply: (iffP eqP) => [|[]] ->].
Qed.
Canonical option_eqMixin := EqMixin opt_eqP.
Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin.
End OptionEqType.
Notation xpred1 := (fun a1 x => x == a1).
Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x).
Section EqPred.
Variable T : eqType.
Definition pred1 (a1 : T) := SimplPred (xpred1 a1).
Definition predU1 (a1 : T) p := SimplPred (xpredU1 a1 p).
End EqPred.
Section TransferEqType.
Variables (T : Type) (eT : eqType) (f : T -> eT).
Lemma inj_eqAxiom : injective f -> Equality.axiom (fun x y => f x == f y).
Proof. by move=> f_inj x y; apply: (iffP eqP) => [|-> //]; apply: f_inj. Qed.
Definition InjEqMixin f_inj := EqMixin (inj_eqAxiom f_inj).
Definition PcanEqMixin g (fK : pcancel f g) := InjEqMixin (pcan_inj fK).
Definition CanEqMixin g (fK : cancel f g) := InjEqMixin (can_inj fK).
End TransferEqType.
(* We use the module system to circumvent a silly limitation that *)
(* forbids using the same constant to coerce to different targets. *)
Module Type EqTypePredSig.
Parameter sort : eqType -> predArgType.
End EqTypePredSig.
Module MakeEqTypePred (eqmod : EqTypePredSig).
Coercion eqmod.sort : eqType >-> predArgType.
End MakeEqTypePred.
Module Export EqTypePred := MakeEqTypePred Equality.
Section SubType.
Variables (T : Type) (P : pred T).
Structure subType : Type := SubType {
sub_sort :> Type;
val : sub_sort -> T;
Sub : forall x, P x -> sub_sort;
_ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u;
_ : forall x Px, val (@Sub x Px) = x
}.
Arguments Sub [s].
Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed.
Definition vrefl_rect := vrefl.
Definition clone_subType U v :=
fun sT & sub_sort sT -> U =>
fun c Urec cK (sT' := @SubType U v c Urec cK) & phant_id sT' sT => sT'.
Variable sT : subType.
Variant Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px).
Lemma SubP u : Sub_spec u.
Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed.
Lemma SubK x Px : @val sT (Sub x Px) = x.
Proof. by case: sT. Qed.
Definition insub x :=
if @idP (P x) is ReflectT Px then @Some sT (Sub x Px) else None.
Definition insubd u0 x := odflt u0 (insub x).
Variant insub_spec x : option sT -> Type :=
| InsubSome u of P x & val u = x : insub_spec x (Some u)
| InsubNone of ~~ P x : insub_spec x None.
Lemma insubP x : insub_spec x (insub x).
Proof.
by rewrite /insub; case: {-}_ / idP; [left; rewrite ?SubK | right; apply/negP].
Qed.
Lemma insubT x Px : insub x = Some (Sub x Px).
Admitted.
Lemma insubF x : P x = false -> insub x = None.
Proof. by move/idP; case: insubP. Qed.
Lemma insubN x : ~~ P x -> insub x = None.
Proof. by move/negPf/insubF. Qed.
Lemma isSome_insub : ([eta insub] : pred T) =1 P.
Proof. by apply: fsym => x; case: insubP => // /negPf. Qed.
Lemma insubK : ocancel insub (@val _).
Proof. by move=> x; case: insubP. Qed.
Lemma valP (u : sT) : P (val u).
Proof. by case/SubP: u => x Px; rewrite SubK. Qed.
Lemma valK : pcancel (@val _) insub.
Proof. by case/SubP=> x Px; rewrite SubK; apply: insubT. Qed.
Lemma val_inj : injective (@val sT).
Proof. exact: pcan_inj valK. Qed.
Lemma valKd u0 : cancel (@val _) (insubd u0).
Proof. by move=> u; rewrite /insubd valK. Qed.
Lemma val_insubd u0 x : val (insubd u0 x) = if P x then x else val u0.
Proof. by rewrite /insubd; case: insubP => [u -> | /negPf->]. Qed.
Lemma insubdK u0 : {in P, cancel (insubd u0) (@val _)}.
Proof. by move=> x Px; rewrite /= val_insubd [P x]Px. Qed.
Definition insub_eq x :=
let Some_sub Px := Some (Sub x Px : sT) in
let None_sub _ := None in
(if P x as Px return P x = Px -> _ then Some_sub else None_sub) (erefl _).
Lemma insub_eqE : insub_eq =1 insub.
Proof.
rewrite /insub_eq /insub => x; case: {2 3}_ / idP (erefl _) => // Px Px'.
by congr (Some _); apply: val_inj; rewrite !SubK.
Qed.
End SubType.
Arguments SubType [T P].
Arguments Sub [T P s].
Arguments vrefl [T P].
Arguments vrefl_rect [T P].
Arguments clone_subType [T P] U v [sT] _ [c Urec cK].
Arguments insub [T P sT].
Arguments insubT [T] P [sT x].
Arguments val_inj [T P sT].
Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj.
Local Notation inlined_sub_rect :=
(fun K K_S u => let (x, Px) as u return K u := u in K_S x Px).
Local Notation inlined_new_rect :=
(fun K K_S u => let (x) as u return K u := u in K_S x).
Notation "[ 'subType' 'for' v ]" := (SubType _ v _ inlined_sub_rect vrefl_rect)
(at level 0, only parsing) : form_scope.
Notation "[ 'sub' 'Type' 'for' v ]" := (SubType _ v _ _ vrefl_rect)
(at level 0, format "[ 'sub' 'Type' 'for' v ]") : form_scope.
Notation "[ 'subType' 'for' v 'by' rec ]" := (SubType _ v _ rec vrefl)
(at level 0, format "[ 'subType' 'for' v 'by' rec ]") : form_scope.
Notation "[ 'subType' 'of' U 'for' v ]" := (clone_subType U v id idfun)
(at level 0, format "[ 'subType' 'of' U 'for' v ]") : form_scope.
(*
Notation "[ 'subType' 'for' v ]" := (clone_subType _ v id idfun)
(at level 0, format "[ 'subType' 'for' v ]") : form_scope.
*)
Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id)
(at level 0, format "[ 'subType' 'of' U ]") : form_scope.
Definition NewType T U v c Urec :=
let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in
SubType U v (fun x _ => c x) Urec'.
Arguments NewType [T U].
Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect)
(at level 0, only parsing) : form_scope.
Notation "[ 'new' 'Type' 'for' v ]" := (NewType v _ _ vrefl_rect)
(at level 0, format "[ 'new' 'Type' 'for' v ]") : form_scope.
Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl)
(at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope.
Definition innew T nT x := @Sub T predT nT x (erefl true).
Arguments innew [T nT].
Prenex Implicits innew.
Lemma innew_val T nT : cancel val (@innew T nT).
Proof. by move=> u; apply: val_inj; apply: SubK. Qed.
(* Prenex Implicits and renaming. *)
Notation sval := (@proj1_sig _ _).
Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
Section SubEqType.
Variables (T : eqType) (P : pred T) (sT : subType P).
Local Notation ev_ax := (fun T v => @Equality.axiom T (fun x y => v x == v y)).
Lemma val_eqP : ev_ax sT val. Proof. exact: inj_eqAxiom val_inj. Qed.
Definition sub_eqMixin := EqMixin val_eqP.
Canonical sub_eqType := Eval hnf in EqType sT sub_eqMixin.
Definition SubEqMixin :=
(let: SubType _ v _ _ _ as sT' := sT
return ev_ax sT' val -> Equality.class_of sT' in
fun vP : ev_ax _ v => EqMixin vP
) val_eqP.
Lemma val_eqE (u v : sT) : (val u == val v) = (u == v).
Proof. by []. Qed.
End SubEqType.
Arguments val_eqP {T P sT x y}.
Prenex Implicits val_eqP.
Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T)
(at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope.
(* ssrnat ---------------------------------------------------------- *)
Notation succn := Datatypes.S.
Notation predn := Peano.pred.
Notation "n .+1" := (succn n) (at level 2, left associativity,
format "n .+1") : nat_scope.
Notation "n .+2" := n.+1.+1 (at level 2, left associativity,
format "n .+2") : nat_scope.
Notation "n .+3" := n.+2.+1 (at level 2, left associativity,
format "n .+3") : nat_scope.
Notation "n .+4" := n.+2.+2 (at level 2, left associativity,
format "n .+4") : nat_scope.
Notation "n .-1" := (predn n) (at level 2, left associativity,
format "n .-1") : nat_scope.
Notation "n .-2" := n.-1.-1 (at level 2, left associativity,
format "n .-2") : nat_scope.
Fixpoint eqn m n {struct m} :=
match m, n with
| 0, 0 => true
| m'.+1, n'.+1 => eqn m' n'
| _, _ => false
end.
Lemma eqnP : Equality.axiom eqn.
Proof.
move=> n m; apply: (iffP idP) => [|<-]; last by elim n.
by elim: n m => [|n IHn] [|m] //= /IHn->.
Qed.
Canonical nat_eqMixin := EqMixin eqnP.
Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin.
Arguments eqnP {x y}.
Prenex Implicits eqnP.
Coercion nat_of_bool (b : bool) := if b then 1 else 0.
Fixpoint odd n := if n is n'.+1 then ~~ odd n' else false.
Lemma oddb (b : bool) : odd b = b. Proof. by case: b. Qed.
Definition subn_rec := minus.
Notation "m - n" := (subn_rec m n) : nat_rec_scope.
Definition subn := nosimpl subn_rec.
Notation "m - n" := (subn m n) : nat_scope.
Definition leq m n := m - n == 0.
Notation "m <= n" := (leq m n) : nat_scope.
Notation "m < n" := (m.+1 <= n) : nat_scope.
Notation "m >= n" := (n <= m) (only parsing) : nat_scope.
Notation "m > n" := (n < m) (only parsing) : nat_scope.
Notation "m <= n <= p" := ((m <= n) && (n <= p)) : nat_scope.
Notation "m < n <= p" := ((m < n) && (n <= p)) : nat_scope.
Notation "m <= n < p" := ((m <= n) && (n < p)) : nat_scope.
Notation "m < n < p" := ((m < n) && (n < p)) : nat_scope.
Open Scope nat_scope.
Lemma ltnS m n : (m < n.+1) = (m <= n). Proof. by []. Qed.
Lemma leq0n n : 0 <= n. Proof. by []. Qed.
Lemma ltn0Sn n : 0 < n.+1. Proof. by []. Qed.
Lemma ltn0 n : n < 0 = false. Proof. by []. Qed.
Lemma leqnn n : n <= n. Proof. by elim: n. Qed.
Hint Resolve leqnn.
Lemma leqnSn n : n <= n.+1. Proof. by elim: n. Qed.
Lemma leq_trans n m p : m <= n -> n <= p -> m <= p.
Admitted.
Lemma leq_ltn_trans n m p : m <= n -> n < p -> m < p.
Admitted.
Lemma leqW m n : m <= n -> m <= n.+1.
Admitted.
Hint Resolve leqnSn.
Lemma ltnW m n : m < n -> m <= n.
Proof. exact: leq_trans. Qed.
Hint Resolve ltnW.
Definition addn_rec := plus.
Notation "m + n" := (addn_rec m n) : nat_rec_scope.
Definition addn := nosimpl addn_rec.
Notation "m + n" := (addn m n) : nat_scope.
Lemma addn0 : right_id 0 addn. Proof. by move=> n; apply/eqP; elim: n. Qed.
Lemma add0n : left_id 0 addn. Proof. by []. Qed.
Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed.
Lemma addnS m n : m + n.+1 = (m + n).+1. Proof. by elim: m. Qed.
Lemma addnCA : left_commutative addn.
Proof. by move=> m n p; elim: m => //= m; rewrite addnS => <-. Qed.
Lemma addnC : commutative addn.
Proof. by move=> m n; rewrite -{1}[n]addn0 addnCA addn0. Qed.
Lemma addnA : associative addn.
Proof. by move=> m n p; rewrite (addnC n) addnCA addnC. Qed.
Lemma subnK m n : m <= n -> (n - m) + m = n.
Admitted.
Definition muln_rec := mult.
Notation "m * n" := (muln_rec m n) : nat_rec_scope.
Definition muln := nosimpl muln_rec.
Notation "m * n" := (muln m n) : nat_scope.
Lemma mul0n : left_zero 0 muln. Proof. by []. Qed.
Lemma muln0 : right_zero 0 muln. Proof. by elim. Qed.
Lemma mul1n : left_id 1 muln. Proof. exact: addn0. Qed.
Lemma mulSn m n : m.+1 * n = n + m * n. Proof. by []. Qed.
Lemma mulSnr m n : m.+1 * n = m * n + n. Proof. exact: addnC. Qed.
Lemma mulnS m n : m * n.+1 = m + m * n.
Proof. by elim: m => // m; rewrite !mulSn !addSn addnCA => ->. Qed.
Lemma mulnSr m n : m * n.+1 = m * n + m.
Proof. by rewrite addnC mulnS. Qed.
Lemma muln1 : right_id 1 muln.
Proof. by move=> n; rewrite mulnSr muln0. Qed.
Lemma mulnC : commutative muln.
Proof.
by move=> m n; elim: m => [|m]; rewrite (muln0, mulnS) // mulSn => ->.
Qed.
Lemma mulnDl : left_distributive muln addn.
Proof. by move=> m1 m2 n; elim: m1 => //= m1 IHm; rewrite -addnA -IHm. Qed.
Lemma mulnDr : right_distributive muln addn.
Proof. by move=> m n1 n2; rewrite !(mulnC m) mulnDl. Qed.
Lemma mulnA : associative muln.
Proof. by move=> m n p; elim: m => //= m; rewrite mulSn mulnDl => ->. Qed.
Lemma mulnCA : left_commutative muln.
Proof. by move=> m n1 n2; rewrite !mulnA (mulnC m). Qed.
Lemma mulnAC : right_commutative muln.
Proof. by move=> m n p; rewrite -!mulnA (mulnC n). Qed.
Lemma mulnACA : interchange muln muln.
Proof. by move=> m n p q; rewrite -!mulnA (mulnCA n). Qed.
(* seq ------------------------------------------------------------- *)
Delimit Scope seq_scope with SEQ.
Open Scope seq_scope.
(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *)
Notation seq := list.
Prenex Implicits cons.
Notation Cons T := (@cons T) (only parsing).
Notation Nil T := (@nil T) (only parsing).
Bind Scope seq_scope with list.
Arguments cons _%type _ _%SEQ.
(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *)
(* them here. *)
Infix "::" := cons : seq_scope.
(* GG - this triggers a camlp4 warning, as if this Notation had been Reserved *)
Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope.
Notation "[ :: x1 ]" := (x1 :: [::])
(at level 0, format "[ :: x1 ]") : seq_scope.
Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope.
Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..)
(at level 0, format
"'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'"
) : seq_scope.
Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..)
(at level 0, format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]"
) : seq_scope.
Section Sequences.
Variable n0 : nat. (* numerical parameter for take, drop et al *)
Variable T : Type. (* must come before the implicit Type *)
Variable x0 : T. (* default for head/nth *)
Implicit Types x y z : T.
Implicit Types m n : nat.
Implicit Type s : seq T.
Fixpoint size s := if s is _ :: s' then (size s').+1 else 0.
Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2
where "s1 ++ s2" := (cat s1 s2) : seq_scope.
Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed.
Lemma cats0 s : s ++ [::] = s.
Proof. by elim: s => //= x s ->. Qed.
Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3.
Proof. by elim: s1 => //= x s1 ->. Qed.
Fixpoint nth s n {struct n} :=
if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0.
Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z].
Variant last_spec : seq T -> Type :=
| LastNil : last_spec [::]
| LastRcons s x : last_spec (rcons s x).
Lemma lastP s : last_spec s.
Proof using. Admitted.
Lemma last_ind P :
P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s.
Proof using. Admitted.
Section Map.
Variables (T2 : Type) (f : T -> T2).
Fixpoint map s := if s is x :: s' then f x :: map s' else [::].
End Map.
Section SeqFind.
Variable a : pred T.
Fixpoint count s := if s is x :: s' then a x + count s' else 0.
Fixpoint filter s :=
if s is x :: s' then if a x then x :: filter s' else filter s' else [::].
End SeqFind.
End Sequences.
Infix "++" := cat : seq_scope.
Notation count_mem x := (count (pred_of_simpl (pred1 x))).
Section EqSeq.
Variables (n0 : nat) (T : eqType) (x0 : T).
Local Notation nth := (nth x0).
Implicit Type s : seq T.
Implicit Types x y z : T.
Fixpoint eqseq s1 s2 {struct s2} :=
match s1, s2 with
| [::], [::] => true
| x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2'
| _, _ => false
end.
Lemma eqseqP : Equality.axiom eqseq.
Proof.
move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl].
case: (x1 =P x2) => [<-|neqx]; last by right; case.
by apply: (iffP (IHs s2)) => [<-|[]].
Qed.
Canonical seq_eqMixin := EqMixin eqseqP.
Canonical seq_eqType := Eval hnf in EqType (seq T) seq_eqMixin.
Fixpoint mem_seq (s : seq T) :=
if s is y :: s' then xpredU1 y (mem_seq s') else xpred0.
Definition eqseq_class := seq T.
Identity Coercion seq_of_eqseq : eqseq_class >-> seq.
Coercion pred_of_eq_seq (s : eqseq_class) : {pred T} := [eta mem_seq s].
Canonical seq_predType := @PredType T (seq T) pred_of_eq_seq.
Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true.
End EqSeq.
Definition bitseq := seq bool.
Canonical bitseq_eqType := Eval hnf in [eqType of bitseq].
Canonical bitseq_predType := Eval hnf in [predType of bitseq].
Section Pmap.
Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT).
Fixpoint pmap s :=
if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::].
End Pmap.
Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::].
Section FoldRight.
Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R).
Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0.
End FoldRight.
Lemma mem_iota m n i : (i \in iota m n) = (m <= i) && (i < m + n).
Admitted.
(* choice ------------------------------------------------------------- *)
Module Choice.
Section ClassDef.
Record mixin_of T := Mixin {
find : pred T -> nat -> option T;
_ : forall P n x, find P n = Some x -> P x;
_ : forall P : pred T, (exists x, P x) -> exists n, find P n;
_ : forall P Q : pred T, P =1 Q -> find P =1 find Q
}.
Record class_of T := Class {base : Equality.class_of T; mixin : mixin_of T}.
Local Coercion base : class_of >-> Equality.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c T.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack m :=
fun b bT & phant_id (Equality.class bT) b => Pack (@Class T b m) T.
(* Inheritance *)
Definition eqType := @Equality.Pack cT xclass xT.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> Equality.class_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Notation choiceType := type.
Notation choiceMixin := mixin_of.
Notation ChoiceType T m := (@pack T m _ _ id).
Notation "[ 'choiceType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'choiceType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'choiceType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'choiceType' 'of' T ]") : form_scope.
End Exports.
End Choice.
Export Choice.Exports.
Section ChoiceTheory.
Variable T : choiceType.
Section CanChoice.
Variables (sT : Type) (f : sT -> T).
Lemma PcanChoiceMixin f' : pcancel f f' -> choiceMixin sT.
Admitted.
Definition CanChoiceMixin f' (fK : cancel f f') :=
PcanChoiceMixin (can_pcan fK).
End CanChoice.
Section SubChoice.
Variables (P : pred T) (sT : subType P).
Definition sub_choiceMixin := PcanChoiceMixin (@valK T P sT).
Definition sub_choiceClass := @Choice.Class sT (sub_eqMixin sT) sub_choiceMixin.
Canonical sub_choiceType := Choice.Pack sub_choiceClass sT.
End SubChoice.
Fact seq_choiceMixin : choiceMixin (seq T).
Admitted.
Canonical seq_choiceType := Eval hnf in ChoiceType (seq T) seq_choiceMixin.
End ChoiceTheory.
Fact nat_choiceMixin : choiceMixin nat.
Proof.
pose f := [fun (P : pred nat) n => if P n then Some n else None].
exists f => [P n m | P [n Pn] | P Q eqPQ n] /=; last by rewrite eqPQ.
by case: ifP => // Pn [<-].
by exists n; rewrite Pn.
Qed.
Canonical nat_choiceType := Eval hnf in ChoiceType nat nat_choiceMixin.
Definition bool_choiceMixin := CanChoiceMixin oddb.
Canonical bool_choiceType := Eval hnf in ChoiceType bool bool_choiceMixin.
Canonical bitseq_choiceType := Eval hnf in [choiceType of bitseq].
Notation "[ 'choiceMixin' 'of' T 'by' <: ]" :=
(sub_choiceMixin _ : choiceMixin T)
(at level 0, format "[ 'choiceMixin' 'of' T 'by' <: ]") : form_scope.
Module Countable.
Record mixin_of (T : Type) : Type := Mixin {
pickle : T -> nat;
unpickle : nat -> option T;
pickleK : pcancel pickle unpickle
}.
Definition EqMixin T m := PcanEqMixin (@pickleK T m).
Definition ChoiceMixin T m := PcanChoiceMixin (@pickleK T m).
Section ClassDef.
Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of T }.
Local Coercion base : class_of >-> Choice.class_of.
Structure type : Type := Pack {sort : Type; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c T.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack m :=
fun bT b & phant_id (Choice.class bT) b => Pack (@Class T b m) T.
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
End ClassDef.
Module Exports.
Coercion base : class_of >-> Choice.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Notation countType := type.
Notation CountType T m := (@pack T m _ _ id).
Notation CountMixin := Mixin.
Notation CountChoiceMixin := ChoiceMixin.
Notation "[ 'countType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'countType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'countType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'countType' 'of' T ]") : form_scope.
End Exports.
End Countable.
Export Countable.Exports.
Definition unpickle T := Countable.unpickle (Countable.class T).
Definition pickle T := Countable.pickle (Countable.class T).
Arguments unpickle [T].
Prenex Implicits pickle unpickle.
Section CountableTheory.
Variable T : countType.
Lemma pickleK : @pcancel nat T pickle unpickle.
Proof. exact: Countable.pickleK. Qed.
Definition pickle_inv n :=
obind (fun x : T => if pickle x == n then Some x else None) (unpickle n).
Lemma pickle_invK : ocancel pickle_inv pickle.
Proof.
by rewrite /pickle_inv => n; case def_x: (unpickle n) => //= [x]; case: eqP.
Qed.
Lemma pickleK_inv : pcancel pickle pickle_inv.
Proof. by rewrite /pickle_inv => x; rewrite pickleK /= eqxx. Qed.
Lemma pcan_pickleK sT f f' :
@pcancel T sT f f' -> pcancel (pickle \o f) (pcomp f' unpickle).
Proof. by move=> fK x; rewrite /pcomp pickleK /= fK. Qed.
Definition PcanCountMixin sT f f' (fK : pcancel f f') :=
@CountMixin sT _ _ (pcan_pickleK fK).
Definition CanCountMixin sT f f' (fK : cancel f f') :=
@PcanCountMixin sT _ _ (can_pcan fK).
Definition sub_countMixin P sT := PcanCountMixin (@valK T P sT).
End CountableTheory.
Notation "[ 'countMixin' 'of' T 'by' <: ]" :=
(sub_countMixin _ : Countable.mixin_of T)
(at level 0, format "[ 'countMixin' 'of' T 'by' <: ]") : form_scope.
Section SubCountType.
Variables (T : choiceType) (P : pred T).
Import Countable.
Structure subCountType : Type :=
SubCountType {subCount_sort :> subType P; _ : mixin_of subCount_sort}.
Coercion sub_countType (sT : subCountType) :=
Eval hnf in pack (let: SubCountType _ m := sT return mixin_of sT in m) id.
Canonical sub_countType.
Definition pack_subCountType U :=
fun sT cT & sub_sort sT * sort cT -> U * U =>
fun b m & phant_id (Class b m) (class cT) => @SubCountType sT m.
End SubCountType.
(* This assumes that T has both countType and subType structures. *)
Notation "[ 'subCountType' 'of' T ]" :=
(@pack_subCountType _ _ T _ _ id _ _ id)
(at level 0, format "[ 'subCountType' 'of' T ]") : form_scope.
Lemma nat_pickleK : pcancel id (@Some nat). Proof. by []. Qed.
Definition nat_countMixin := CountMixin nat_pickleK.
Canonical nat_countType := Eval hnf in CountType nat nat_countMixin.
(* fintype --------------------------------------------------------- *)
Module Finite.
Section RawMixin.
Variable T : eqType.
Definition axiom e := forall x : T, count_mem x e = 1.
Lemma uniq_enumP e : uniq e -> e =i T -> axiom e.
Admitted.
Record mixin_of := Mixin {
mixin_base : Countable.mixin_of T;
mixin_enum : seq T;
_ : axiom mixin_enum
}.
End RawMixin.
Section Mixins.
Variable T : countType.
Definition EnumMixin :=
let: Countable.Pack _ (Countable.Class _ m) _ as cT := T
return forall e : seq cT, axiom e -> mixin_of cT in
@Mixin (EqType _ _) m.
Definition UniqMixin e Ue eT := @EnumMixin e (uniq_enumP Ue eT).
Variable n : nat.
End Mixins.
Section ClassDef.
Record class_of T := Class {
base : Choice.class_of T;
mixin : mixin_of (Equality.Pack base T)
}.
Definition base2 T c := Countable.Class (@base T c) (mixin_base (mixin c)).
Local Coercion base : class_of >-> Choice.class_of.
Structure type : Type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c T.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack b0 (m0 : mixin_of (EqType T b0)) :=
fun bT b & phant_id (Choice.class bT) b =>
fun m & phant_id m0 m => Pack (@Class T b m) T.
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (base2 xclass) xT.
End ClassDef.
Module Import Exports.
Coercion mixin_base : mixin_of >-> Countable.mixin_of.
Coercion base : class_of >-> Choice.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion base2 : class_of >-> Countable.class_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Notation finType := type.
Notation FinType T m := (@pack T _ m _ _ id _ id).
Notation FinMixin := EnumMixin.
Notation UniqFinMixin := UniqMixin.
Notation "[ 'finType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'finType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'finType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'finType' 'of' T ]") : form_scope.
End Exports.
Module Type EnumSig.
Parameter enum : forall cT : type, seq cT.
Axiom enumDef : enum = fun cT => mixin_enum (class cT).
End EnumSig.
Module EnumDef : EnumSig.
Definition enum cT := mixin_enum (class cT).
Definition enumDef := erefl enum.
End EnumDef.
Notation enum := EnumDef.enum.
End Finite.
Export Finite.Exports.
Section SubFinType.
Variables (T : choiceType) (P : pred T).
Import Finite.
Structure subFinType := SubFinType {
subFin_sort :> subType P;
_ : mixin_of (sub_eqType subFin_sort)
}.
Definition pack_subFinType U :=
fun cT b m & phant_id (class cT) (@Class U b m) =>
fun sT m' & phant_id m' m => @SubFinType sT m'.
Implicit Type sT : subFinType.
Definition subFin_mixin sT :=
let: SubFinType _ m := sT return mixin_of (sub_eqType sT) in m.
Coercion subFinType_subCountType sT := @SubCountType _ _ sT (subFin_mixin sT).
Canonical subFinType_subCountType.
Coercion subFinType_finType sT :=
Pack (@Class sT (sub_choiceClass sT) (subFin_mixin sT)) sT.
Canonical subFinType_finType.
Definition enum_mem T (mA : mem_pred _) := filter mA (Finite.enum T).
Definition image_mem T T' f mA : seq T' := map f (@enum_mem T mA).
Definition codom T T' f := @image_mem T T' f (mem T).
Lemma codom_val sT x : (x \in codom (val : sT -> T)) = P x.
Admitted.
End SubFinType.
(* This assumes that T has both finType and subCountType structures. *)
Notation "[ 'subFinType' 'of' T ]" := (@pack_subFinType _ _ T _ _ _ id _ _ id)
(at level 0, format "[ 'subFinType' 'of' T ]") : form_scope.
Section OrdinalSub.
Variable n : nat.
Inductive ordinal : predArgType := Ordinal m of m < n.
Coercion nat_of_ord i := let: Ordinal m _ := i in m.
Canonical ordinal_subType := [subType for nat_of_ord].
Definition ordinal_eqMixin := Eval hnf in [eqMixin of ordinal by <:].
Canonical ordinal_eqType := Eval hnf in EqType ordinal ordinal_eqMixin.
Definition ordinal_choiceMixin := [choiceMixin of ordinal by <:].
Canonical ordinal_choiceType :=
Eval hnf in ChoiceType ordinal ordinal_choiceMixin.
Definition ordinal_countMixin := [countMixin of ordinal by <:].
Canonical ordinal_countType := Eval hnf in CountType ordinal ordinal_countMixin.
Canonical ordinal_subCountType := [subCountType of ordinal].
Lemma ltn_ord (i : ordinal) : i < n. Proof. exact: valP i. Qed.
Lemma ord_inj : injective nat_of_ord. Proof. exact: val_inj. Qed.
Definition ord_enum : seq ordinal := pmap insub (iota 0 n).
Lemma val_ord_enum : map val ord_enum = iota 0 n.
Admitted.
Lemma ord_enum_uniq : uniq ord_enum.
Admitted.
Lemma mem_ord_enum i : i \in ord_enum.
Admitted.
Definition ordinal_finMixin :=
Eval hnf in UniqFinMixin ord_enum_uniq mem_ord_enum.
Canonical ordinal_finType := Eval hnf in FinType ordinal ordinal_finMixin.
Canonical ordinal_subFinType := Eval hnf in [subFinType of ordinal].
End OrdinalSub.
Notation "''I_' n" := (ordinal n)
(at level 8, n at level 2, format "''I_' n").
(* bigop ----------------------------------------------------------------- *)
Reserved Notation "\big [ op / idx ]_ i F"
(at level 36, F at level 36, op, idx at level 10, i at level 0,
right associativity,
format "'[' \big [ op / idx ]_ i '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <- r | P ) F"
(at level 36, F at level 36, op, idx at level 10, i, r at level 50,
format "'[' \big [ op / idx ]_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <- r ) F"
(at level 36, F at level 36, op, idx at level 10, i, r at level 50,
format "'[' \big [ op / idx ]_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i < n | P ) F"
(at level 36, F at level 36, op, idx at level 10, m, i, n at level 50,
format "'[' \big [ op / idx ]_ ( m <= i < n | P ) F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i < n ) F"
(at level 36, F at level 36, op, idx at level 10, i, m, n at level 50,
format "'[' \big [ op / idx ]_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i | P ) F"
(at level 36, F at level 36, op, idx at level 10, i at level 50,
format "'[' \big [ op / idx ]_ ( i | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i : t | P ) F"
(at level 36, F at level 36, op, idx at level 10, i at level 50,
format "'[' \big [ op / idx ]_ ( i : t | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i : t ) F"
(at level 36, F at level 36, op, idx at level 10, i at level 50,
format "'[' \big [ op / idx ]_ ( i : t ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i < n | P ) F"
(at level 36, F at level 36, op, idx at level 10, i, n at level 50,
format "'[' \big [ op / idx ]_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i < n ) F"
(at level 36, F at level 36, op, idx at level 10, i, n at level 50,
format "'[' \big [ op / idx ]_ ( i < n ) F ']'").
Reserved Notation "\big [ op / idx ]_ ( i 'in' A | P ) F"
(at level 36, F at level 36, op, idx at level 10, i, A at level 50,
format "'[' \big [ op / idx ]_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i 'in' A ) F"
(at level 36, F at level 36, op, idx at level 10, i, A at level 50,
format "'[' \big [ op / idx ]_ ( i 'in' A ) '/ ' F ']'").
Module Monoid.
Section Definitions.
Variables (T : Type) (idm : T).
Structure law := Law {
operator : T -> T -> T;
_ : associative operator;
_ : left_id idm operator;
_ : right_id idm operator
}.
Local Coercion operator : law >-> Funclass.
Structure com_law := ComLaw {
com_operator : law;
_ : commutative com_operator
}.
Local Coercion com_operator : com_law >-> law.
Structure mul_law := MulLaw {
mul_operator : T -> T -> T;
_ : left_zero idm mul_operator;
_ : right_zero idm mul_operator
}.
Local Coercion mul_operator : mul_law >-> Funclass.
Structure add_law (mul : T -> T -> T) := AddLaw {
add_operator : com_law;
_ : left_distributive mul add_operator;
_ : right_distributive mul add_operator
}.
Local Coercion add_operator : add_law >-> com_law.
Let op_id (op1 op2 : T -> T -> T) := phant_id op1 op2.
Definition clone_law op :=
fun (opL : law) & op_id opL op =>
fun opmA op1m opm1 (opL' := @Law op opmA op1m opm1)
& phant_id opL' opL => opL'.
Definition clone_com_law op :=
fun (opL : law) (opC : com_law) & op_id opL op & op_id opC op =>
fun opmC (opC' := @ComLaw opL opmC) & phant_id opC' opC => opC'.
Definition clone_mul_law op :=
fun (opM : mul_law) & op_id opM op =>
fun op0m opm0 (opM' := @MulLaw op op0m opm0) & phant_id opM' opM => opM'.
Definition clone_add_law mop aop :=
fun (opC : com_law) (opA : add_law mop) & op_id opC aop & op_id opA aop =>
fun mopDm mopmD (opA' := @AddLaw mop opC mopDm mopmD)
& phant_id opA' opA => opA'.
End Definitions.
Module Import Exports.
Coercion operator : law >-> Funclass.
Coercion com_operator : com_law >-> law.
Coercion mul_operator : mul_law >-> Funclass.
Coercion add_operator : add_law >-> com_law.
Notation "[ 'law' 'of' f ]" := (@clone_law _ _ f _ id _ _ _ id)
(at level 0, format"[ 'law' 'of' f ]") : form_scope.
Notation "[ 'com_law' 'of' f ]" := (@clone_com_law _ _ f _ _ id id _ id)
(at level 0, format "[ 'com_law' 'of' f ]") : form_scope.
Notation "[ 'mul_law' 'of' f ]" := (@clone_mul_law _ _ f _ id _ _ id)
(at level 0, format"[ 'mul_law' 'of' f ]") : form_scope.
Notation "[ 'add_law' m 'of' a ]" := (@clone_add_law _ _ m a _ _ id id _ _ id)
(at level 0, format "[ 'add_law' m 'of' a ]") : form_scope.
End Exports.
Section CommutativeAxioms.
Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T).
Hypothesis mulC : commutative mul.
Lemma mulC_id : left_id one mul -> right_id one mul.
Proof. by move=> mul1x x; rewrite mulC. Qed.
Lemma mulC_zero : left_zero zero mul -> right_zero zero mul.
Proof. by move=> mul0x x; rewrite mulC. Qed.
Lemma mulC_dist : left_distributive mul add -> right_distributive mul add.
Proof. by move=> mul_addl x y z; rewrite !(mulC x). Qed.
End CommutativeAxioms.
Module Theory.
Section Theory.
Variables (T : Type) (idm : T).
Section Plain.
Variable mul : law idm.
Lemma mul1m : left_id idm mul. Proof. by case mul. Qed.
Lemma mulm1 : right_id idm mul. Proof. by case mul. Qed.
Lemma mulmA : associative mul. Proof. by case mul. Qed.
(*Lemma iteropE n x : iterop n mul x idm = iter n (mul x) idm.*)
End Plain.
Section Commutative.
Variable mul : com_law idm.
Lemma mulmC : commutative mul. Proof. by case mul. Qed.
Lemma mulmCA : left_commutative mul.
Proof. by move=> x y z; rewrite !mulmA (mulmC x). Qed.
Lemma mulmAC : right_commutative mul.
Proof. by move=> x y z; rewrite -!mulmA (mulmC y). Qed.
Lemma mulmACA : interchange mul mul.
Proof. by move=> x y z t; rewrite -!mulmA (mulmCA y). Qed.
End Commutative.
Section Mul.
Variable mul : mul_law idm.
Lemma mul0m : left_zero idm mul. Proof. by case mul. Qed.
Lemma mulm0 : right_zero idm mul. Proof. by case mul. Qed.
End Mul.
Section Add.
Variables (mul : T -> T -> T) (add : add_law idm mul).
Lemma addmA : associative add. Proof. exact: mulmA. Qed.
Lemma addmC : commutative add. Proof. exact: mulmC. Qed.
Lemma addmCA : left_commutative add. Proof. exact: mulmCA. Qed.
Lemma addmAC : right_commutative add. Proof. exact: mulmAC. Qed.
Lemma add0m : left_id idm add. Proof. exact: mul1m. Qed.
Lemma addm0 : right_id idm add. Proof. exact: mulm1. Qed.
Lemma mulm_addl : left_distributive mul add. Proof. by case add. Qed.
Lemma mulm_addr : right_distributive mul add. Proof. by case add. Qed.
End Add.
Definition simpm := (mulm1, mulm0, mul1m, mul0m, mulmA).
End Theory.
End Theory.
Include Theory.
End Monoid.
Export Monoid.Exports.
Section PervasiveMonoids.
Import Monoid.
Canonical andb_monoid := Law andbA andTb andbT.
Canonical andb_comoid := ComLaw andbC.
Canonical andb_muloid := MulLaw andFb andbF.
Canonical orb_monoid := Law orbA orFb orbF.
Canonical orb_comoid := ComLaw orbC.
Canonical orb_muloid := MulLaw orTb orbT.
Canonical addb_monoid := Law addbA addFb addbF.
Canonical addb_comoid := ComLaw addbC.
Canonical orb_addoid := AddLaw andb_orl andb_orr.
Canonical andb_addoid := AddLaw orb_andl orb_andr.
Canonical addb_addoid := AddLaw andb_addl andb_addr.
Canonical addn_monoid := Law addnA add0n addn0.
Canonical addn_comoid := ComLaw addnC.
Canonical muln_monoid := Law mulnA mul1n muln1.
Canonical muln_comoid := ComLaw mulnC.
Canonical muln_muloid := MulLaw mul0n muln0.
Canonical addn_addoid := AddLaw mulnDl mulnDr.
Canonical cat_monoid T := Law (@catA T) (@cat0s T) (@cats0 T).
End PervasiveMonoids.
Delimit Scope big_scope with BIG.
Open Scope big_scope.
(* The bigbody wrapper is a workaround for a quirk of the Coq pretty-printer, *)
(* which would fail to redisplay the \big notation when the <general_term> or *)
(* <condition> do not depend on the bound index. The BigBody constructor *)
(* packages both in in a term in which i occurs; it also depends on the *)
(* iterated <op>, as this can give more information on the expected type of *)
(* the <general_term>, thus allowing for the insertion of coercions. *)
Variant bigbody R I := BigBody of I & (R -> R -> R) & bool & R.
Definition applybig {R I} (body : bigbody R I) x :=
let: BigBody _ op b v := body in if b then op v x else x.
Definition reducebig R I idx r (body : I -> bigbody R I) :=
foldr (applybig \o body) idx r.
Module Type BigOpSig.
Parameter bigop : forall R I, R -> seq I -> (I -> bigbody R I) -> R.
Axiom bigopE : bigop = reducebig.
End BigOpSig.
Module BigOp : BigOpSig.
Definition bigop := reducebig.
Lemma bigopE : bigop = reducebig. Proof. by []. Qed.
End BigOp.
Notation bigop := BigOp.bigop (only parsing).
Canonical bigop_unlock := Unlockable BigOp.bigopE.
Definition index_iota m n := iota m (n - m).
Definition index_enum (T : finType) := Finite.enum T.
Lemma mem_index_iota m n i : i \in index_iota m n = (m <= i < n).
Admitted.
Lemma mem_index_enum T i : i \in index_enum T.
Admitted.
Hint Resolve mem_index_enum.
(*
Lemma filter_index_enum T P : filter P (index_enum T) = enum P.
Proof. by []. Qed.
*)
Notation "\big [ op / idx ]_ ( i <- r | P ) F" :=
(bigop idx r (fun i => BigBody i op P%B F)) : big_scope.
Notation "\big [ op / idx ]_ ( i <- r ) F" :=
(bigop idx r (fun i => BigBody i op true F)) : big_scope.
Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" :=
(bigop idx (index_iota m n) (fun i : nat => BigBody i op P%B F))
: big_scope.
Notation "\big [ op / idx ]_ ( m <= i < n ) F" :=
(bigop idx (index_iota m n) (fun i : nat => BigBody i op true F))
: big_scope.
Notation "\big [ op / idx ]_ ( i | P ) F" :=
(bigop idx (index_enum _) (fun i => BigBody i op P%B F)) : big_scope.
Notation "\big [ op / idx ]_ i F" :=
(bigop idx (index_enum _) (fun i => BigBody i op true F)) : big_scope.
Notation "\big [ op / idx ]_ ( i : t | P ) F" :=
(bigop idx (index_enum _) (fun i : t => BigBody i op P%B F))
(only parsing) : big_scope.
Notation "\big [ op / idx ]_ ( i : t ) F" :=
(bigop idx (index_enum _) (fun i : t => BigBody i op true F))
(only parsing) : big_scope.
Notation "\big [ op / idx ]_ ( i < n | P ) F" :=
(\big[op/idx]_(i : ordinal n | P%B) F) : big_scope.
Notation "\big [ op / idx ]_ ( i < n ) F" :=
(\big[op/idx]_(i : ordinal n) F) : big_scope.
Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" :=
(\big[op/idx]_(i | (i \in A) && P) F) : big_scope.
Notation "\big [ op / idx ]_ ( i 'in' A ) F" :=
(\big[op/idx]_(i | i \in A) F) : big_scope.
Notation BIG_F := (F in \big[_/_]_(i <- _ | _) F i)%pattern.
Notation BIG_P := (P in \big[_/_]_(i <- _ | P i) _)%pattern.
(* Induction loading *)
Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F :
K (\big[op/idx]_(i <- r | P i) F i) * K' (\big[op/idx]_(i <- r | P i) F i)
-> K' (\big[op/idx]_(i <- r | P i) F i).
Proof. by case. Qed.
Arguments big_load [R] K [K'] idx op [I].
Section Elim3.
Variables (R1 R2 R3 : Type) (K : R1 -> R2 -> R3 -> Type).
Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
Variables (id2 : R2) (op2 : R2 -> R2 -> R2).
Variables (id3 : R3) (op3 : R3 -> R3 -> R3).
Hypothesis Kid : K id1 id2 id3.
Lemma big_rec3 I r (P : pred I) F1 F2 F3
(K_F : forall i y1 y2 y3, P i -> K y1 y2 y3 ->
K (op1 (F1 i) y1) (op2 (F2 i) y2) (op3 (F3 i) y3)) :
K (\big[op1/id1]_(i <- r | P i) F1 i)
(\big[op2/id2]_(i <- r | P i) F2 i)
(\big[op3/id3]_(i <- r | P i) F3 i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.
Hypothesis Kop : forall x1 x2 x3 y1 y2 y3,
K x1 x2 x3 -> K y1 y2 y3-> K (op1 x1 y1) (op2 x2 y2) (op3 x3 y3).
Lemma big_ind3 I r (P : pred I) F1 F2 F3
(K_F : forall i, P i -> K (F1 i) (F2 i) (F3 i)) :
K (\big[op1/id1]_(i <- r | P i) F1 i)
(\big[op2/id2]_(i <- r | P i) F2 i)
(\big[op3/id3]_(i <- r | P i) F3 i).
Proof. by apply: big_rec3 => i x1 x2 x3 /K_F; apply: Kop. Qed.
End Elim3.
Arguments big_rec3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ [I r P F1 F2 F3].
Arguments big_ind3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ _ [I r P F1 F2 F3].
Section Elim2.
Variables (R1 R2 : Type) (K : R1 -> R2 -> Type) (f : R2 -> R1).
Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
Variables (id2 : R2) (op2 : R2 -> R2 -> R2).
Hypothesis Kid : K id1 id2.
Lemma big_rec2 I r (P : pred I) F1 F2
(K_F : forall i y1 y2, P i -> K y1 y2 ->
K (op1 (F1 i) y1) (op2 (F2 i) y2)) :
K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.
Hypothesis Kop : forall x1 x2 y1 y2,
K x1 x2 -> K y1 y2 -> K (op1 x1 y1) (op2 x2 y2).
Lemma big_ind2 I r (P : pred I) F1 F2 (K_F : forall i, P i -> K (F1 i) (F2 i)) :
K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
Proof. by apply: big_rec2 => i x1 x2 /K_F; apply: Kop. Qed.
Hypotheses (f_op : {morph f : x y / op2 x y >-> op1 x y}) (f_id : f id2 = id1).
Lemma big_morph I r (P : pred I) F :
f (\big[op2/id2]_(i <- r | P i) F i) = \big[op1/id1]_(i <- r | P i) f (F i).
Proof. by rewrite unlock; elim: r => //= i r <-; rewrite -f_op -fun_if. Qed.
End Elim2.
Arguments big_rec2 [R1 R2] K [id1 op1 id2 op2] _ [I r P F1 F2].
Arguments big_ind2 [R1 R2] K [id1 op1 id2 op2] _ _ [I r P F1 F2].
Arguments big_morph [R1 R2] f [id1 op1 id2 op2] _ _ [I].
Section Elim1.
Variables (R : Type) (K : R -> Type) (f : R -> R).
Variables (idx : R) (op op' : R -> R -> R).
Hypothesis Kid : K idx.
Lemma big_rec I r (P : pred I) F
(Kop : forall i x, P i -> K x -> K (op (F i) x)) :
K (\big[op/idx]_(i <- r | P i) F i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: Kop. Qed.
Hypothesis Kop : forall x y, K x -> K y -> K (op x y).
Lemma big_ind I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
K (\big[op/idx]_(i <- r | P i) F i).
Proof. by apply: big_rec => // i x /K_F /Kop; apply. Qed.
Hypothesis Kop' : forall x y, K x -> K y -> op x y = op' x y.
Lemma eq_big_op I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
\big[op/idx]_(i <- r | P i) F i = \big[op'/idx]_(i <- r | P i) F i.
Proof.
by elim/(big_load K): _; elim/big_rec2: _ => // i _ y Pi [Ky <-]; auto.
Qed.
Hypotheses (fM : {morph f : x y / op x y}) (f_id : f idx = idx).
Lemma big_endo I r (P : pred I) F :
f (\big[op/idx]_(i <- r | P i) F i) = \big[op/idx]_(i <- r | P i) f (F i).
Proof. exact: big_morph. Qed.
End Elim1.
Arguments big_rec [R] K [idx op] _ [I r P F].
Arguments big_ind [R] K [idx op] _ _ [I r P F].
Arguments eq_big_op [R] K [idx op] op' _ _ _ [I].
Arguments big_endo [R] f [idx op] _ _ [I].
(* zmodp -------------------------------------------------------------------- *)
Lemma ord1 : all_equal_to (@Ordinal 1 0 is_true_true : 'I_1).
Admitted.
|