| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 
 | (************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Lemma test (x : bool) : True.
have H1 x := x.
have (x) := x => H2.
have H3 T (x : T) := x.
have ? : bool := H1 _ x.
have ? : bool := H2 _ x.
have ? : bool := H3 _ x.
have ? (z : bool) : forall y : bool, z = z := fun y => refl_equal _.
have ? w : w = w := @refl_equal nat w.
have ? y : true by [].
have ? (z : bool) : z = z.
  exact: (@refl_equal _ z).
have ? (z w : bool) : z = z by exact: (@refl_equal _ z).
have H w (a := 3) (_ := 4) : w && true = w.
  by rewrite andbT.
exact I.
Qed.
Lemma test1 : True.
suff (x : bool): x = x /\ True.
  by move/(_ true); case=> _.
split; first by exact: (@refl_equal _ x).
suff H y : y && true = y /\ True.
  by case: (H true).
suff H1 /= : true && true /\ True.
  by rewrite andbT; split; [exact: (@refl_equal _ y) | exact: I].
match goal with |- is_true true /\ True => idtac end.
by split.
Qed.
Lemma foo n : n >= 0.
have f i (j := i + n) : j < n.
  match goal with j := i + n |- _ => idtac end.
Undo 2.
suff f i (j := i + n) : j < n.
  done.
match goal with j := i + n |- _ => idtac end.
Undo 3.
done.
Qed.
 |