File: ipat_tmp.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (22 lines) | stat: -rw-r--r-- 553 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Require Import ssreflect ssrbool.

 Axiom eqn : nat -> nat -> bool.
 Infix "==" := eqn (at level 40).
 Axiom eqP : forall x y : nat, reflect (x = y) (x == y).

 Lemma test1 :
   forall x y : nat, x = y -> forall z : nat, y == z -> x = z.
 Proof.
 by move=> x y + z /eqP <-; apply.
 Qed.

 Lemma test2 : forall (x y : nat) (e : x = y), e = e -> x = y.
 Proof.
 move=> + y + _ => x def_x; exact: (def_x : x = y).
 Qed.

 Lemma test3 :
   forall x y : nat, x = y -> forall z : nat, y == z -> x = z.
 Proof.
 move=> ++++ /eqP <- => x y e z; exact: e.
 Qed.