1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
Require Import Uint63.
Set Universe Polymorphism.
Primitive array := #array_type.
Primitive make : forall A, int -> A -> array A := #array_make.
Arguments make {_} _ _.
Primitive get : forall A, array A -> int -> A := #array_get.
Arguments get {_} _ _.
Primitive default : forall A, array A -> A:= #array_default.
Arguments default {_} _.
Primitive set : forall A, array A -> int -> A -> array A := #array_set.
Arguments set {_} _ _ _.
Primitive length : forall A, array A -> int := #array_length.
Arguments length {_} _.
Primitive copy : forall A, array A -> array A := #array_copy.
Arguments copy {_} _.
Module Export PArrayNotations.
Declare Scope array_scope.
Delimit Scope array_scope with array.
Notation "t .[ i ]" := (get t i)
(at level 2, left associativity, format "t .[ i ]").
Notation "t .[ i <- a ]" := (set t i a)
(at level 2, left associativity, format "t .[ i <- a ]").
End PArrayNotations.
Local Open Scope uint63_scope.
Local Open Scope array_scope.
Primitive max_length := #array_max_length.
(** Axioms *)
Axiom get_out_of_bounds : forall A (t:array A) i, (i <? length t) = false -> t.[i] = default t.
Axiom get_set_same : forall A t i (a:A), (i <? length t) = true -> t.[i<-a].[i] = a.
Axiom get_set_other : forall A t i j (a:A), i <> j -> t.[i<-a].[j] = t.[j].
Axiom default_set : forall A t i (a:A), default t.[i<-a] = default t.
Axiom get_make : forall A (a:A) size i, (make size a).[i] = a.
Axiom leb_length : forall A (t:array A), length t <=? max_length = true.
Axiom length_make : forall A size (a:A),
length (make size a) = if size <=? max_length then size else max_length.
Axiom length_set : forall A t i (a:A),
length t.[i<-a] = length t.
Axiom get_copy : forall A (t:array A) i, (copy t).[i] = t.[i].
Axiom length_copy : forall A (t:array A), length (copy t) = length t.
Axiom array_ext : forall A (t1 t2:array A),
length t1 = length t2 ->
(forall i, i <? length t1 = true -> t1.[i] = t2.[i]) ->
default t1 = default t2 ->
t1 = t2.
(* Lemmas *)
Lemma default_copy A (t:array A) : default (copy t) = default t.
Proof.
assert (irr_lt : length t <? length t = false).
destruct (Uint63.ltbP (length t) (length t)); try reflexivity.
exfalso; eapply BinInt.Z.lt_irrefl; eassumption.
assert (get_copy := get_copy A t (length t)).
rewrite !get_out_of_bounds in get_copy; try assumption.
rewrite length_copy; assumption.
Qed.
Lemma default_make A (a : A) size : default (make size a) = a.
Proof.
assert (irr_lt : length (make size a) <? length (make size a) = false).
destruct (Uint63.ltbP (length (make size a)) (length (make size a))); try reflexivity.
exfalso; eapply BinInt.Z.lt_irrefl; eassumption.
assert (get_make := get_make A a size (length (make size a))).
rewrite !get_out_of_bounds in get_make; assumption.
Qed.
Lemma get_set_same_default A (t : array A) (i : int) :
t.[i <- default t].[i] = default t.
Proof.
case_eq (i <? length t); intros.
rewrite get_set_same; trivial.
rewrite get_out_of_bounds, default_set; trivial.
rewrite length_set; trivial.
Qed.
Lemma get_not_default_lt A (t:array A) x :
t.[x] <> default t -> (x <? length t) = true.
Proof.
intros Hd.
case_eq (x <? length t); intros Heq; [trivial | ].
elim Hd; rewrite get_out_of_bounds; trivial.
Qed.
|