1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Typeclass-based setoids. Definitions on [Equivalence].
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Classes.Init.
Require Import Relation_Definitions.
Require Export Coq.Classes.CRelationClasses.
Require Import Coq.Classes.CMorphisms.
Set Implicit Arguments.
Unset Strict Implicit.
Generalizable Variables A R eqA B S eqB.
Local Obligation Tactic := try solve [simpl_crelation].
Local Open Scope signatureT_scope.
Definition equiv `{Equivalence A R} : crelation A := R.
(** Overloaded notations for setoid equivalence and inequivalence.
Not to be confused with [eq] and [=]. *)
Declare Scope equiv_scope.
Notation " x === y " := (equiv x y) (at level 70, no associativity) : equiv_scope.
Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : equiv_scope.
Local Open Scope equiv_scope.
(** Overloading for [PER]. *)
Definition pequiv `{PER A R} : crelation A := R.
(** Overloaded notation for partial equivalence. *)
Infix "=~=" := pequiv (at level 70, no associativity) : equiv_scope.
(** Shortcuts to make proof search easier. *)
#[global]
Program Instance equiv_reflexive `(sa : Equivalence A) : Reflexive equiv.
#[global]
Program Instance equiv_symmetric `(sa : Equivalence A) : Symmetric equiv.
#[global]
Program Instance equiv_transitive `(sa : Equivalence A) : Transitive equiv.
Next Obligation.
Proof. intros A R sa x y z Hxy Hyz.
now transitivity y.
Qed.
Arguments equiv_symmetric {A R} sa x y : rename.
Arguments equiv_transitive {A R} sa x y z : rename.
(** Use the [substitute] command which substitutes an equivalence in every hypothesis. *)
Ltac setoid_subst H :=
match type of H with
?x === ?y => substitute H ; clear H x
end.
Ltac setoid_subst_nofail :=
match goal with
| [ H : ?x === ?y |- _ ] => setoid_subst H ; setoid_subst_nofail
| _ => idtac
end.
(** [subst*] will try its best at substituting every equality in the goal. *)
Tactic Notation "subst" "*" := subst_no_fail ; setoid_subst_nofail.
(** Simplify the goal w.r.t. equivalence. *)
Ltac equiv_simplify_one :=
match goal with
| [ H : ?x === ?x |- _ ] => clear H
| [ H : ?x === ?y |- _ ] => setoid_subst H
| [ |- ?x =/= ?y ] => let name:=fresh "Hneq" in intro name
| [ |- ~ ?x === ?y ] => let name:=fresh "Hneq" in intro name
end.
Ltac equiv_simplify := repeat equiv_simplify_one.
(** "reify" relations which are equivalences to applications of the overloaded [equiv] method
for easy recognition in tactics. *)
Ltac equivify_tac :=
match goal with
| [ s : Equivalence ?A ?R, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
| [ s : Equivalence ?A ?R |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
end.
Ltac equivify := repeat equivify_tac.
Section Respecting.
(** Here we build an equivalence instance for functions which relates respectful ones only,
we do not export it. *)
Definition respecting `(eqa : Equivalence A (R : crelation A),
eqb : Equivalence B (R' : crelation B)) : Type :=
{ morph : A -> B & respectful R R' morph morph }.
Program Instance respecting_equiv `(eqa : Equivalence A R, eqb : Equivalence B R') :
Equivalence (fun (f g : respecting eqa eqb) =>
forall (x y : A), R x y -> R' (projT1 f x) (projT1 g y)).
Solve Obligations with unfold respecting in * ; simpl_crelation ; program_simpl.
Next Obligation.
Proof.
intros. intros f g h H H' x y Rxy.
unfold respecting in *. program_simpl. transitivity (g y); auto. firstorder.
Qed.
End Respecting.
(** The default equivalence on function spaces, with higher-priority than [eq]. *)
#[global]
Instance pointwise_reflexive {A} `(reflb : Reflexive B eqB) :
Reflexive (pointwise_relation A eqB) | 9.
Proof. firstorder. Qed.
#[global]
Instance pointwise_symmetric {A} `(symb : Symmetric B eqB) :
Symmetric (pointwise_relation A eqB) | 9.
Proof. firstorder. Qed.
#[global]
Instance pointwise_transitive {A} `(transb : Transitive B eqB) :
Transitive (pointwise_relation A eqB) | 9.
Proof. firstorder. Qed.
#[global]
Instance pointwise_equivalence {A} `(eqb : Equivalence B eqB) :
Equivalence (pointwise_relation A eqB) | 9.
Proof. split; apply _. Qed.
|