1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Typeclass-based morphism definition and standard, minimal instances
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Export Coq.Classes.CRelationClasses.
Generalizable Variables A eqA B C D R RA RB RC m f x y.
Local Obligation Tactic := try solve [ simpl_crelation ].
Set Universe Polymorphism.
(** * Morphisms.
We now turn to the definition of [Proper] and declare standard instances.
These will be used by the [setoid_rewrite] tactic later. *)
(** A morphism for a relation [R] is a proper element of the relation.
The relation [R] will be instantiated by [respectful] and [A] by an arrow
type for usual morphisms. *)
Section Proper.
Context {A : Type}.
Class Proper (R : crelation A) (m : A) :=
proper_prf : R m m.
(** Every element in the carrier of a reflexive relation is a morphism
for this relation. We use a proxy class for this case which is used
internally to discharge reflexivity constraints. The [Reflexive]
instance will almost always be used, but it won't apply in general to
any kind of [Proper (A -> B) _ _] goal, making proof-search much
slower. A cleaner solution would be to be able to set different
priorities in different hint bases and select a particular hint
database for resolution of a type class constraint. *)
Class ProperProxy (R : crelation A) (m : A) :=
proper_proxy : R m m.
Lemma eq_proper_proxy (x : A) : ProperProxy (@eq A) x.
Proof. firstorder. Qed.
Lemma reflexive_proper_proxy `(Reflexive A R) (x : A) : ProperProxy R x.
Proof. firstorder. Qed.
Lemma proper_proper_proxy x `(Proper R x) : ProperProxy R x.
Proof. firstorder. Qed.
(** Respectful morphisms. *)
(** The fully dependent version, not used yet. *)
Definition respectful_hetero
(A B : Type)
(C : A -> Type) (D : B -> Type)
(R : A -> B -> Type)
(R' : forall (x : A) (y : B), C x -> D y -> Type) :
(forall x : A, C x) -> (forall x : B, D x) -> Type :=
fun f g => forall x y, R x y -> R' x y (f x) (g y).
(** The non-dependent version is an instance where we forget dependencies. *)
Definition respectful {B} (R : crelation A) (R' : crelation B) : crelation (A -> B) :=
Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').
End Proper.
(** We favor the use of Leibniz equality or a declared reflexive crelation
when resolving [ProperProxy], otherwise, if the crelation is given (not an evar),
we fall back to [Proper]. *)
#[global]
Hint Extern 1 (ProperProxy _ _) =>
class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances.
#[global]
Hint Extern 2 (ProperProxy ?R _) =>
not_evar R; class_apply @proper_proper_proxy : typeclass_instances.
(** Notations reminiscent of the old syntax for declaring morphisms. *)
Declare Scope signatureT_scope.
Delimit Scope signatureT_scope with signatureT.
Module ProperNotations.
Notation " R ++> R' " := (@respectful _ _ (R%signatureT) (R'%signatureT))
(right associativity, at level 55) : signatureT_scope.
Notation " R ==> R' " := (@respectful _ _ (R%signatureT) (R'%signatureT))
(right associativity, at level 55) : signatureT_scope.
Notation " R --> R' " := (@respectful _ _ (flip (R%signatureT)) (R'%signatureT))
(right associativity, at level 55) : signatureT_scope.
End ProperNotations.
Arguments Proper {A}%type R%signatureT m.
Arguments respectful {A B}%type (R R')%signatureT _ _.
Export ProperNotations.
Local Open Scope signatureT_scope.
(** [solve_proper] try to solve the goal [Proper (?==> ... ==>?) f]
by repeated introductions and setoid rewrites. It should work
fine when [f] is a combination of already known morphisms and
quantifiers. *)
Ltac solve_respectful t :=
match goal with
| |- respectful _ _ _ _ =>
let H := fresh "H" in
intros ? ? H; solve_respectful ltac:(setoid_rewrite H; t)
| _ => t; reflexivity
end.
Ltac solve_proper := unfold Proper; solve_respectful ltac:(idtac).
(** [f_equiv] is a clone of [f_equal] that handles setoid equivalences.
For example, if we know that [f] is a morphism for [E1==>E2==>E],
then the goal [E (f x y) (f x' y')] will be transformed by [f_equiv]
into the subgoals [E1 x x'] and [E2 y y'].
*)
Ltac f_equiv :=
match goal with
| |- ?R (?f ?x) (?f' _) =>
let T := type of x in
let Rx := fresh "R" in
evar (Rx : crelation T);
let H := fresh in
assert (H : (Rx==>R)%signatureT f f');
unfold Rx in *; clear Rx; [ f_equiv | apply H; clear H; try reflexivity ]
| |- ?R ?f ?f' =>
solve [change (Proper R f); eauto with typeclass_instances | reflexivity ]
| _ => idtac
end.
Section Relations.
Context {A : Type}.
(** [forall_def] reifies the dependent product as a definition. *)
Definition forall_def (P : A -> Type) : Type := forall x : A, P x.
(** Dependent pointwise lifting of a crelation on the range. *)
Definition forall_relation (P : A -> Type)
(sig : forall a, crelation (P a)) : crelation (forall x, P x) :=
fun f g => forall a, sig a (f a) (g a).
(** Non-dependent pointwise lifting *)
Definition pointwise_relation {B} (R : crelation B) : crelation (A -> B) :=
fun f g => forall a, R (f a) (g a).
Lemma pointwise_pointwise {B} (R : crelation B) :
relation_equivalence (pointwise_relation R) (@eq A ==> R).
Proof.
intros. split.
- simpl_crelation.
- firstorder.
Qed.
(** Subcrelations induce a morphism on the identity. *)
Global Instance subrelation_id_proper `(subrelation A RA RA') : Proper (RA ==> RA') id.
Proof. firstorder. Qed.
(** The subrelation property goes through products as usual. *)
Lemma subrelation_respectful `(subl : subrelation A RA' RA, subr : subrelation B RB RB') :
subrelation (RA ==> RB) (RA' ==> RB').
Proof. simpl_crelation. Qed.
(** And of course it is reflexive. *)
Lemma subrelation_refl R : @subrelation A R R.
Proof. simpl_crelation. Qed.
(** [Proper] is itself a covariant morphism for [subrelation].
We use an unconvertible premise to avoid looping.
*)
Lemma subrelation_proper `(mor : Proper A R' m)
`(unc : Unconvertible (crelation A) R R')
`(sub : subrelation A R' R) : Proper R m.
Proof.
intros. apply sub. apply mor.
Qed.
Global Instance proper_subrelation_proper_arrow :
Proper (subrelation ++> eq ==> arrow) (@Proper A).
Proof. reduce. subst. firstorder. Qed.
Global Instance pointwise_subrelation `(sub : subrelation B R R') :
subrelation (pointwise_relation R) (pointwise_relation R') | 4.
Proof. reduce. unfold pointwise_relation in *. apply sub. auto. Qed.
(** For dependent function types. *)
Lemma forall_subrelation (P : A -> Type) (R S : forall x : A, crelation (P x)) :
(forall a, subrelation (R a) (S a)) ->
subrelation (forall_relation P R) (forall_relation P S).
Proof. reduce. firstorder. Qed.
End Relations.
Global Typeclasses Opaque respectful pointwise_relation forall_relation.
Arguments forall_relation {A P}%type sig%signatureT _ _.
Arguments pointwise_relation A%type {B}%type R%signatureT _ _.
#[global]
Hint Unfold Reflexive : core.
#[global]
Hint Unfold Symmetric : core.
#[global]
Hint Unfold Transitive : core.
(** Resolution with subrelation: favor decomposing products over applying reflexivity
for unconstrained goals. *)
Ltac subrelation_tac T U :=
(is_ground T ; is_ground U ; class_apply @subrelation_refl) ||
class_apply @subrelation_respectful || class_apply @subrelation_refl.
#[global]
Hint Extern 3 (@subrelation _ ?T ?U) => subrelation_tac T U : typeclass_instances.
CoInductive apply_subrelation : Prop := do_subrelation.
Ltac proper_subrelation :=
match goal with
[ H : apply_subrelation |- _ ] => clear H ; class_apply @subrelation_proper
end.
#[global]
Hint Extern 5 (@Proper _ ?H _) => proper_subrelation : typeclass_instances.
(** Essential subrelation instances for [iff], [impl] and [pointwise_relation]. *)
#[global]
Instance iff_impl_subrelation : subrelation iff impl | 2.
Proof. firstorder. Qed.
#[global]
Instance iff_flip_impl_subrelation : subrelation iff (flip impl) | 2.
Proof. firstorder. Qed.
(** Essential subrelation instances for [iffT] and [arrow]. *)
#[global]
Instance iffT_arrow_subrelation : subrelation iffT arrow | 2.
Proof. firstorder. Qed.
#[global]
Instance iffT_flip_arrow_subrelation : subrelation iffT (flip arrow) | 2.
Proof. firstorder. Qed.
(** We use an extern hint to help unification. *)
#[global]
Hint Extern 4 (subrelation (@forall_relation ?A ?B ?R) (@forall_relation _ _ ?S)) =>
apply (@forall_subrelation A B R S) ; intro : typeclass_instances.
Section GenericInstances.
(* Share universes *)
Implicit Types A B C : Type.
(** We can build a PER on the Coq function space if we have PERs on the domain and
codomain. *)
Program Instance respectful_per `(PER A R, PER B R') : PER (R ==> R').
Next Obligation.
Proof with auto.
intros A R H B R' H0 x y z X X0 x0 y0 X1.
assert(R x0 x0).
- transitivity y0... symmetry...
- transitivity (y x0)...
Qed.
Unset Strict Universe Declaration.
(** The complement of a crelation conserves its proper elements. *)
(** The [flip] too, actually the [flip] instance is a bit more general. *)
Program Definition flip_proper
`(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) :
Proper (RB ==> RA ==> RC) (flip f) := _.
Next Obligation.
Proof.
intros A B C RA RB RC f mor x y X x0 y0 X0.
apply mor ; auto.
Qed.
(** Every Transitive crelation gives rise to a binary morphism on [impl],
contravariant in the first argument, covariant in the second. *)
Global Program
Instance trans_contra_co_type_morphism
`(Transitive A R) : Proper (R --> R ++> arrow) R.
Next Obligation.
Proof with auto.
intros A R H x y X x0 y0 X0 X1.
transitivity x...
transitivity x0...
Qed.
(** Proper declarations for partial applications. *)
Global Program
Instance trans_contra_inv_impl_type_morphism
`(Transitive A R) {x} : Proper (R --> flip arrow) (R x) | 3.
Next Obligation.
Proof with auto.
intros A R H x x0 y X X0.
transitivity y...
Qed.
Global Program
Instance trans_co_impl_type_morphism
`(Transitive A R) {x} : Proper (R ++> arrow) (R x) | 3.
Next Obligation.
Proof with auto.
intros A R H x x0 y X X0.
transitivity x0...
Qed.
Global Program
Instance trans_sym_co_inv_impl_type_morphism
`(PER A R) {x} : Proper (R ++> flip arrow) (R x) | 3.
Next Obligation.
Proof with auto.
intros A R H x x0 y X X0.
transitivity y... symmetry...
Qed.
Global Program Instance trans_sym_contra_arrow_morphism
`(PER A R) {x} : Proper (R --> arrow) (R x) | 3.
Next Obligation.
Proof with auto.
intros A R H x x0 y X X0.
transitivity x0... symmetry...
Qed.
Global Program Instance per_partial_app_type_morphism
`(PER A R) {x} : Proper (R ==> iffT) (R x) | 2.
Next Obligation.
Proof with auto.
intros A R H x x0 y X.
split.
- intros ; transitivity x0...
- intros.
transitivity y...
symmetry...
Qed.
(** Every Transitive crelation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof to get an [R y z] goal. *)
Global Program
Instance trans_co_eq_inv_arrow_morphism
`(Transitive A R) : Proper (R ==> (@eq A) ==> flip arrow) R | 2.
Next Obligation.
Proof with auto.
intros A R H x y X y0 y1 e X0; destruct e.
transitivity y...
Qed.
(** Every Symmetric and Transitive crelation gives rise to an equivariant morphism. *)
Global Program
Instance PER_type_morphism `(PER A R) : Proper (R ==> R ==> iffT) R | 1.
Next Obligation.
Proof with auto.
intros A R H x y X x0 y0 X0.
split ; intros.
- transitivity x0... transitivity x... symmetry...
- transitivity y... transitivity y0... symmetry...
Qed.
Lemma symmetric_equiv_flip `(Symmetric A R) : relation_equivalence R (flip R).
Proof. firstorder. Qed.
Global Program Instance compose_proper A B C RA RB RC :
Proper ((RB ==> RC) ==> (RA ==> RB) ==> (RA ==> RC)) (@compose A B C).
Next Obligation.
Proof.
simpl_crelation.
unfold compose. firstorder.
Qed.
(** Coq functions are morphisms for Leibniz equality,
applied only if really needed. *)
Global Instance reflexive_eq_dom_reflexive `(Reflexive B R') {A} :
Reflexive (@Logic.eq A ==> R').
Proof. simpl_crelation. Qed.
(** [respectful] is a morphism for crelation equivalence . *)
Global Instance respectful_morphism {A B} :
Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence)
(@respectful A B).
Proof.
intros R R' HRR' S S' HSS' f g.
unfold respectful , relation_equivalence in *; simpl in *.
split ; intros H x y Hxy.
- apply (fst (HSS' _ _)). apply H. now apply (snd (HRR' _ _)).
- apply (snd (HSS' _ _)). apply H. now apply (fst (HRR' _ _)).
Qed.
(** [R] is Reflexive, hence we can build the needed proof. *)
Lemma Reflexive_partial_app_morphism `(Proper (A -> B) (R ==> R') m, ProperProxy A R x) :
Proper R' (m x).
Proof. simpl_crelation. Qed.
Class Params {A} (of : A) (arity : nat).
Lemma flip_respectful {A B} (R : crelation A) (R' : crelation B) :
relation_equivalence (flip (R ==> R')) (flip R ==> flip R').
Proof.
intros.
unfold flip, respectful.
split ; intros ; intuition.
Qed.
(** Treating flip: can't make them direct instances as we
need at least a [flip] present in the goal. *)
Lemma flip1 `(subrelation A R' R) : subrelation (flip (flip R')) R.
Proof. firstorder. Qed.
Lemma flip2 `(subrelation A R R') : subrelation R (flip (flip R')).
Proof. firstorder. Qed.
(** That's if and only if *)
Lemma eq_subrelation `(Reflexive A R) : subrelation (@eq A) R.
Proof. simpl_crelation. Qed.
(** Once we have normalized, we will apply this instance to simplify the problem. *)
Definition proper_flip_proper `(mor : Proper A R m) : Proper (flip R) m := mor.
(** Every reflexive crelation gives rise to a morphism,
only for immediately solving goals without variables. *)
Lemma reflexive_proper `{Reflexive A R} (x : A) : Proper R x.
Proof. firstorder. Qed.
Lemma proper_eq {A} (x : A) : Proper (@eq A) x.
Proof. intros. apply reflexive_proper. Qed.
End GenericInstances.
Class PartialApplication.
CoInductive normalization_done : Prop := did_normalization.
Ltac partial_application_tactic :=
let rec do_partial_apps H m cont :=
match m with
| ?m' ?x => class_apply @Reflexive_partial_app_morphism ;
[(do_partial_apps H m' ltac:(idtac))|clear H]
| _ => cont
end
in
let rec do_partial H ar m :=
match ar with
| 0%nat => do_partial_apps H m ltac:(fail 1)
| S ?n' =>
match m with
?m' ?x => do_partial H n' m'
end
end
in
let params m sk fk :=
(let m' := fresh in head_of_constr m' m ;
let n := fresh in evar (n:nat) ;
let v := eval compute in n in clear n ;
let H := fresh in
assert(H:Params m' v) by typeclasses eauto ;
let v' := eval compute in v in subst m';
(sk H v' || fail 1))
|| fk
in
let on_morphism m cont :=
params m ltac:(fun H n => do_partial H n m)
ltac:(cont)
in
match goal with
| [ _ : normalization_done |- _ ] => fail 1
| [ _ : @Params _ _ _ |- _ ] => fail 1
| [ |- @Proper ?T _ (?m ?x) ] =>
match goal with
| [ H : PartialApplication |- _ ] =>
class_apply @Reflexive_partial_app_morphism; [|clear H]
| _ => on_morphism (m x)
ltac:(class_apply @Reflexive_partial_app_morphism)
end
end.
(** Bootstrap !!! *)
#[global]
Instance proper_proper {A} : Proper (relation_equivalence ==> eq ==> iffT) (@Proper A).
Proof.
intros R R' HRR' x y <-. red in HRR'.
split ; red ; intros.
- now apply (fst (HRR' _ _)).
- now apply (snd (HRR' _ _)).
Qed.
Ltac proper_reflexive :=
match goal with
| [ _ : normalization_done |- _ ] => fail 1
| _ => class_apply proper_eq || class_apply @reflexive_proper
end.
#[global]
Hint Extern 1 (subrelation (flip _) _) => class_apply @flip1 : typeclass_instances.
#[global]
Hint Extern 1 (subrelation _ (flip _)) => class_apply @flip2 : typeclass_instances.
(* Hint Extern 1 (Proper _ (complement _)) => apply @complement_proper *)
(* : typeclass_instances. *)
#[global]
Hint Extern 1 (Proper _ (flip _)) => apply @flip_proper
: typeclass_instances.
#[global]
Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_flip_proper
: typeclass_instances.
#[global]
Hint Extern 4 (@Proper _ _ _) => partial_application_tactic
: typeclass_instances.
#[global]
Hint Extern 7 (@Proper _ _ _) => proper_reflexive
: typeclass_instances.
(** Special-purpose class to do normalization of signatures w.r.t. flip. *)
Section Normalize.
Context (A : Type).
Class Normalizes (m : crelation A) (m' : crelation A) :=
normalizes : relation_equivalence m m'.
(** Current strategy: add [flip] everywhere and reduce using [subrelation]
afterwards. *)
Lemma proper_normalizes_proper `(Normalizes R0 R1, Proper A R1 m) : Proper R0 m.
Proof.
apply (_ : Normalizes R0 R1). assumption.
Qed.
Lemma flip_atom R : Normalizes R (flip (flip R)).
Proof.
firstorder.
Qed.
End Normalize.
Lemma flip_arrow `(NA : Normalizes A R (flip R'''), NB : Normalizes B R' (flip R'')) :
Normalizes (A -> B) (R ==> R') (flip (R''' ==> R'')%signatureT).
Proof.
unfold Normalizes in *. intros.
rewrite NA, NB. firstorder.
Qed.
Ltac normalizes :=
match goal with
| [ |- Normalizes _ (respectful _ _) _ ] => class_apply @flip_arrow
| _ => class_apply @flip_atom
end.
Ltac proper_normalization :=
match goal with
| [ _ : normalization_done |- _ ] => fail 1
| [ _ : apply_subrelation |- @Proper _ ?R _ ] =>
let H := fresh "H" in
set(H:=did_normalization) ; class_apply @proper_normalizes_proper
end.
#[global]
Hint Extern 1 (Normalizes _ _ _) => normalizes : typeclass_instances.
#[global]
Hint Extern 6 (@Proper _ _ _) => proper_normalization
: typeclass_instances.
(** When the crelation on the domain is symmetric, we can
flip the crelation on the codomain. Same for binary functions. *)
Lemma proper_sym_flip :
forall `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f),
Proper (R1==>flip R2) f.
Proof.
intros A R1 Sym B R2 f Hf.
intros x x' Hxx'. apply Hf, Sym, Hxx'.
Qed.
Lemma proper_sym_flip_2 :
forall `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f),
Proper (R1==>R2==>flip R3) f.
Proof.
intros A R1 Sym1 B R2 Sym2 C R3 f Hf.
intros x x' Hxx' y y' Hyy'. apply Hf; auto.
Qed.
(** When the crelation on the domain is symmetric, a predicate is
compatible with [iff] as soon as it is compatible with [impl].
Same with a binary crelation. *)
Lemma proper_sym_impl_iff : forall `(Symmetric A R)`(Proper _ (R==>impl) f),
Proper (R==>iff) f.
Proof.
intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
Qed.
Lemma proper_sym_arrow_iffT : forall `(Symmetric A R)`(Proper _ (R==>arrow) f),
Proper (R==>iffT) f.
Proof.
intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
Qed.
Lemma proper_sym_impl_iff_2 :
forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>impl) f),
Proper (R==>R'==>iff) f.
Proof.
intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
repeat red in Hf. split; eauto.
Qed.
Lemma proper_sym_arrow_iffT_2 :
forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>arrow) f),
Proper (R==>R'==>iffT) f.
Proof.
intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
repeat red in Hf. split; eauto.
Qed.
(** A [PartialOrder] is compatible with its underlying equivalence. *)
Require Import Relation_Definitions.
#[global]
Instance PartialOrder_proper_type `(PartialOrder A eqA R) :
Proper (eqA==>eqA==>iffT) R.
Proof.
intros.
apply proper_sym_arrow_iffT_2. 1-2: auto with crelations.
intros x x' Hx y y' Hy Hr.
transitivity x.
- generalize (partial_order_equivalence x x'); compute; intuition.
- transitivity y; auto.
generalize (partial_order_equivalence y y'); compute; intuition.
Qed.
(** From a [PartialOrder] to the corresponding [StrictOrder]:
[lt = le /\ ~eq].
If the order is total, we could also say [gt = ~le]. *)
Lemma PartialOrder_StrictOrder `(PartialOrder A eqA R) :
StrictOrder (relation_conjunction R (complement eqA)).
Proof.
split; compute.
- intros x (_,Hx). apply Hx, Equivalence_Reflexive.
- intros x y z (Hxy,Hxy') (Hyz,Hyz'). split.
+ apply PreOrder_Transitive with y; assumption.
+ intro Hxz.
apply Hxy'.
apply partial_order_antisym; auto.
rewrite Hxz. auto.
Qed.
(** From a [StrictOrder] to the corresponding [PartialOrder]:
[le = lt \/ eq].
If the order is total, we could also say [ge = ~lt]. *)
Lemma StrictOrder_PreOrder
`(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iffT) R) :
PreOrder (relation_disjunction R eqA).
Proof.
split.
- intros x. right. reflexivity.
- intros x y z [Hxy|Hxy] [Hyz|Hyz].
+ left. transitivity y; auto.
+ left. rewrite <- Hyz; auto.
+ left. rewrite Hxy; auto.
+ right. transitivity y; auto.
Qed.
#[global]
Hint Extern 4 (PreOrder (relation_disjunction _ _)) =>
class_apply StrictOrder_PreOrder : typeclass_instances.
Lemma StrictOrder_PartialOrder
`(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iffT) R) :
PartialOrder eqA (relation_disjunction R eqA).
Proof.
intros. intros x y. compute. intuition.
elim (StrictOrder_Irreflexive x).
transitivity y; auto.
Qed.
#[global]
Hint Extern 4 (StrictOrder (relation_conjunction _ _)) =>
class_apply PartialOrder_StrictOrder : typeclass_instances.
#[global]
Hint Extern 4 (PartialOrder _ (relation_disjunction _ _)) =>
class_apply StrictOrder_PartialOrder : typeclass_instances.
|