File: Morphisms_Relations.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (61 lines) | stat: -rw-r--r-- 2,586 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** * Morphism instances for relations.

   Author: Matthieu Sozeau
   Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)

Require Import Relation_Definitions.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Program.

Generalizable Variables A l.

(** Morphisms for relations *)

#[global]
Instance relation_conjunction_morphism {A} : Proper (relation_equivalence (A:=A) ==>
  relation_equivalence ==> relation_equivalence) relation_conjunction.
  Proof. firstorder. Qed.

#[global]
Instance relation_disjunction_morphism {A} : Proper (relation_equivalence (A:=A) ==>
  relation_equivalence ==> relation_equivalence) relation_disjunction.
  Proof. firstorder. Qed.

(* Predicate equivalence is exactly the same as the pointwise lifting of [iff]. *)

Lemma predicate_equivalence_pointwise (l : Tlist) :
  Proper (@predicate_equivalence l ==> pointwise_lifting iff l) id.
Proof. do 2 red. unfold predicate_equivalence. auto. Qed.

Lemma predicate_implication_pointwise (l : Tlist) :
  Proper (@predicate_implication l ==> pointwise_lifting impl l) id.
Proof. do 2 red. unfold predicate_implication. auto. Qed.

(** The instantiation at relation allows rewriting applications of relations
    [R x y] to [R' x y]  when [R] and [R'] are in [relation_equivalence]. *)

#[global]
Instance relation_equivalence_pointwise {A} :
  Proper (relation_equivalence ==> pointwise_relation A (pointwise_relation A iff)) id.
Proof. intro. apply (predicate_equivalence_pointwise (Tcons A (Tcons A Tnil))). Qed.

#[global]
Instance subrelation_pointwise {A} :
  Proper (subrelation ==> pointwise_relation A (pointwise_relation A impl)) id.
Proof. intro. apply (predicate_implication_pointwise (Tcons A (Tcons A Tnil))). Qed.


Lemma flip_pointwise_relation A (R : relation A) :
  relation_equivalence (pointwise_relation A (flip R)) (flip (pointwise_relation A R)).
Proof. intros. split; firstorder. Qed.