1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite maps library *)
(** This functor derives additional facts from [FMapInterface.S]. These
facts are mainly the specifications of [FMapInterface.S] written using
different styles: equivalence and boolean equalities.
*)
Require Import Bool DecidableType DecidableTypeEx OrderedType Morphisms.
Require Export FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
#[global]
Hint Extern 1 (Equivalence _) => constructor; congruence : core.
(** * Facts about weak maps *)
Module WFacts_fun (E:DecidableType)(Import M:WSfun E).
Notation eq_dec := E.eq_dec.
Definition eqb x y := if eq_dec x y then true else false.
Lemma eq_bool_alt : forall b b', b=b' <-> (b=true <-> b'=true).
Proof.
destruct b; destruct b'; intuition.
Qed.
Lemma eq_option_alt : forall (elt:Type)(o o':option elt),
o=o' <-> (forall e, o=Some e <-> o'=Some e).
Proof.
split; intros.
subst; split; auto.
destruct o; destruct o'; try rewrite H; auto.
symmetry; rewrite <- H; auto.
Qed.
Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt),
MapsTo x e m -> MapsTo x e' m -> e=e'.
Proof.
intros.
generalize (find_1 H) (find_1 H0); clear H H0.
intros; rewrite H in H0; injection H0; auto.
Qed.
(** ** Specifications written using equivalences *)
Section IffSpec.
Variable elt elt' elt'': Type.
Implicit Type m: t elt.
Implicit Type x y z: key.
Implicit Type e: elt.
Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
Proof.
unfold In.
split; intros (e0,H0); exists e0.
apply (MapsTo_1 H H0); auto.
apply (MapsTo_1 (E.eq_sym H) H0); auto.
Qed.
Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
Proof.
split; apply MapsTo_1; auto.
Qed.
Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.
Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
Proof.
intros; rewrite mem_in_iff; destruct (mem x m); intuition.
Qed.
Lemma In_dec : forall m x, { In x m } + { ~ In x m }.
Proof.
intros.
generalize (mem_in_iff m x).
destruct (mem x m); [left|right]; intuition.
Qed.
Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
Proof.
split; [apply find_1|apply find_2].
Qed.
Lemma not_find_in_iff : forall m x, ~In x m <-> find x m = None.
Proof.
split; intros.
rewrite eq_option_alt. intro e. rewrite <- find_mapsto_iff.
split; try discriminate. intro H'; elim H; exists e; auto.
intros (e,He); rewrite find_mapsto_iff,H in He; discriminate.
Qed.
Lemma in_find_iff : forall m x, In x m <-> find x m <> None.
Proof.
intros; rewrite <- not_find_in_iff, mem_in_iff.
destruct mem; intuition.
Qed.
Lemma equal_iff : forall m m' cmp, Equivb cmp m m' <-> equal cmp m m' = true.
Proof.
split; [apply equal_1|apply equal_2].
Qed.
Lemma empty_mapsto_iff : forall x e, MapsTo x e (empty elt) <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.
Lemma empty_in_iff : forall x, In x (empty elt) <-> False.
Proof.
unfold In.
split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
Qed.
Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true.
Proof.
split; [apply is_empty_1|apply is_empty_2].
Qed.
Lemma add_mapsto_iff : forall m x y e e',
MapsTo y e' (add x e m) <->
(E.eq x y /\ e=e') \/
(~E.eq x y /\ MapsTo y e' m).
Proof.
intros.
intuition.
destruct (eq_dec x y); [left|right].
split; auto.
symmetry; apply (MapsTo_fun (e':=e) H); auto with map.
split; auto; apply add_3 with x e; auto.
subst; auto with map.
Qed.
Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
Proof.
unfold In; split.
intros (e',H).
destruct (eq_dec x y) as [E|E]; auto.
right; exists e'; auto.
apply (add_3 E H).
destruct (eq_dec x y) as [E|E]; auto.
intros.
exists e; apply add_1; auto.
intros [H|(e',H)].
destruct E; auto.
exists e'; apply add_2; auto.
Qed.
Lemma add_neq_mapsto_iff : forall m x y e e',
~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.
Lemma add_neq_in_iff : forall m x y e,
~ E.eq x y -> (In y (add x e m) <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (add_3 H H0).
apply add_2; auto.
Qed.
Lemma remove_mapsto_iff : forall m x y e,
MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
Proof.
intros.
split; intros.
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
apply remove_3 with x; auto.
apply remove_2; intuition.
Qed.
Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
Proof.
unfold In; split.
intros (e,H).
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
exists e; apply remove_3 with x; auto.
intros (H,(e,H0)); exists e; apply remove_2; auto.
Qed.
Lemma remove_neq_mapsto_iff : forall m x y e,
~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.
Lemma remove_neq_in_iff : forall m x y,
~ E.eq x y -> (In y (remove x m) <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (remove_3 H0).
apply remove_2; auto.
Qed.
Lemma elements_mapsto_iff : forall m x e,
MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
Proof.
split; [apply elements_1 | apply elements_2].
Qed.
Lemma elements_in_iff : forall m x,
In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
Proof.
unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
Qed.
Lemma map_mapsto_iff : forall m x b (f : elt -> elt'),
MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
Proof.
split.
case_eq (find x m); intros.
exists e.
split.
apply (MapsTo_fun (m:=map f m) (x:=x)); auto with map.
apply find_2; auto with map.
assert (In x (map f m)) by (exists b; auto).
destruct (map_2 H1) as (a,H2).
rewrite (find_1 H2) in H; discriminate.
intros (a,(H,H0)).
subst b; auto with map.
Qed.
Lemma map_in_iff : forall m x (f : elt -> elt'),
In x (map f m) <-> In x m.
Proof.
split; intros; eauto with map.
destruct H as (a,H).
exists (f a); auto with map.
Qed.
Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
In x (mapi f m) <-> In x m.
Proof.
split; intros; eauto with map.
destruct H as (a,H).
destruct (mapi_1 f H) as (y,(H0,H1)).
exists (f y a); auto.
Qed.
(** Unfortunately, we don't have simple equivalences for [mapi]
and [MapsTo]. The only correct one needs compatibility of [f]. *)
Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
MapsTo x b (mapi f m) ->
exists a y, E.eq y x /\ b = f y a /\ MapsTo x a m.
Proof.
intros; case_eq (find x m); intros.
exists e.
destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
apply find_2; auto with map.
exists y; repeat split; auto with map.
apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto with map.
assert (In x (mapi f m)) by (exists b; auto).
destruct (mapi_2 H1) as (a,H2).
rewrite (find_1 H2) in H0; discriminate.
Qed.
Lemma mapi_1bis : forall m x e (f:key->elt->elt'),
(forall x y e, E.eq x y -> f x e = f y e) ->
MapsTo x e m -> MapsTo x (f x e) (mapi f m).
Proof.
intros.
destruct (mapi_1 f H0) as (y,(H1,H2)).
replace (f x e) with (f y e) by auto.
auto.
Qed.
Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
(forall x y e, E.eq x y -> f x e = f y e) ->
(MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
Proof.
split.
intros.
destruct (mapi_inv H0) as (a,(y,(H1,(H2,H3)))).
exists a; split; auto.
subst b; auto.
intros (a,(H0,H1)).
subst b.
apply mapi_1bis; auto.
Qed.
(** Things are even worse for [map2] : we don't try to state any
equivalence, see instead boolean results below. *)
End IffSpec.
(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
Ltac map_iff :=
repeat (progress (
rewrite add_mapsto_iff || rewrite add_in_iff ||
rewrite remove_mapsto_iff || rewrite remove_in_iff ||
rewrite empty_mapsto_iff || rewrite empty_in_iff ||
rewrite map_mapsto_iff || rewrite map_in_iff ||
rewrite mapi_in_iff)).
(** ** Specifications written using boolean predicates *)
Section BoolSpec.
Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false.
Proof.
intros.
generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
destruct (find x m); destruct (mem x m); auto.
intros.
rewrite <- H0; exists e; rewrite H; auto.
intuition.
destruct H0 as (e,H0).
destruct (H e); intuition discriminate.
Qed.
Variable elt elt' elt'' : Type.
Implicit Types m : t elt.
Implicit Types x y z : key.
Implicit Types e : elt.
Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
Proof.
intros.
generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
destruct (mem x m); destruct (mem y m); intuition.
Qed.
Lemma find_o : forall m x y, E.eq x y -> find x m = find y m.
Proof.
intros. rewrite eq_option_alt. intro e. rewrite <- 2 find_mapsto_iff.
apply MapsTo_iff; auto.
Qed.
Lemma empty_o : forall x, find x (empty elt) = None.
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, empty_mapsto_iff; now intuition.
Qed.
Lemma empty_a : forall x, mem x (empty elt) = false.
Proof.
intros.
case_eq (mem x (empty elt)); intros; auto.
generalize (mem_2 H).
rewrite empty_in_iff; intuition.
Qed.
Lemma add_eq_o : forall m x y e,
E.eq x y -> find y (add x e m) = Some e.
Proof.
auto with map.
Qed.
Lemma add_neq_o : forall m x y e,
~ E.eq x y -> find y (add x e m) = find y m.
Proof.
intros. rewrite eq_option_alt. intro e'. rewrite <- 2 find_mapsto_iff.
apply add_neq_mapsto_iff; auto.
Qed.
#[local]
Hint Resolve add_neq_o : map.
Lemma add_o : forall m x y e,
find y (add x e m) = if eq_dec x y then Some e else find y m.
Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.
Lemma add_eq_b : forall m x y e,
E.eq x y -> mem y (add x e m) = true.
Proof.
intros; rewrite mem_find_b; rewrite add_eq_o; auto.
Qed.
Lemma add_neq_b : forall m x y e,
~E.eq x y -> mem y (add x e m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
Qed.
Lemma add_b : forall m x y e,
mem y (add x e m) = eqb x y || mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
destruct (eq_dec x y); simpl; auto.
Qed.
Lemma remove_eq_o : forall m x y,
E.eq x y -> find y (remove x m) = None.
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, remove_mapsto_iff; now intuition.
Qed.
#[local]
Hint Resolve remove_eq_o : map.
Lemma remove_neq_o : forall m x y,
~ E.eq x y -> find y (remove x m) = find y m.
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, remove_neq_mapsto_iff; now intuition.
Qed.
#[local]
Hint Resolve remove_neq_o : map.
Lemma remove_o : forall m x y,
find y (remove x m) = if eq_dec x y then None else find y m.
Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.
Lemma remove_eq_b : forall m x y,
E.eq x y -> mem y (remove x m) = false.
Proof.
intros; rewrite mem_find_b; rewrite remove_eq_o; auto.
Qed.
Lemma remove_neq_b : forall m x y,
~ E.eq x y -> mem y (remove x m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_neq_o; auto.
Qed.
Lemma remove_b : forall m x y,
mem y (remove x m) = negb (eqb x y) && mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.
Lemma map_o : forall m x (f:elt->elt'),
find x (map f m) = Datatypes.option_map f (find x m).
Proof.
intros.
generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
(fun b => map_mapsto_iff m x b f).
destruct (find x (map f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H; rewrite H1; exists e0; rewrite H0; auto.
destruct (H e) as [_ H2].
rewrite H1 in H2.
destruct H2 as (a,(_,H2)); auto.
rewrite H0 in H2; discriminate.
rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
Qed.
Lemma map_b : forall m x (f:elt->elt'),
mem x (map f m) = mem x m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite map_o.
destruct (find x m); simpl; auto.
Qed.
Lemma mapi_b : forall m x (f:key->elt->elt'),
mem x (mapi f m) = mem x m.
Proof.
intros.
generalize (mem_in_iff (mapi f m) x) (mem_in_iff m x) (mapi_in_iff m x f).
destruct (mem x (mapi f m)); destruct (mem x m); simpl; auto; intros.
symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
rewrite <- H; rewrite H1; rewrite H0; auto.
Qed.
Lemma mapi_o : forall m x (f:key->elt->elt'),
(forall x y e, E.eq x y -> f x e = f y e) ->
find x (mapi f m) = Datatypes.option_map (f x) (find x m).
Proof.
intros.
generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x)
(fun b => mapi_mapsto_iff m x b H).
destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
destruct (H0 e) as [_ H3].
rewrite H2 in H3.
destruct H3 as (a,(_,H3)); auto.
rewrite H1 in H3; discriminate.
rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
Qed.
Lemma map2_1bis : forall (m: t elt)(m': t elt') x
(f:option elt->option elt'->option elt''),
f None None = None ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros.
case_eq (find x m); intros.
rewrite <- H0.
apply map2_1; auto with map.
left; exists e; auto with map.
case_eq (find x m'); intros.
rewrite <- H0; rewrite <- H1.
apply map2_1; auto.
right; exists e; auto with map.
rewrite H.
case_eq (find x (map2 f m m')); intros; auto with map.
assert (In x (map2 f m m')) by (exists e; auto with map).
destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
rewrite (find_1 H4) in H0; discriminate.
rewrite (find_1 H4) in H1; discriminate.
Qed.
Lemma elements_o : forall m x,
find x m = findA (eqb x) (elements m).
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, elements_mapsto_iff.
unfold eqb.
rewrite <- findA_NoDupA; dintuition; try apply elements_3w; eauto.
Qed.
Lemma elements_b : forall m x,
mem x m = existsb (fun p => eqb x (fst p)) (elements m).
Proof.
intros.
generalize (mem_in_iff m x)(elements_in_iff m x)
(existsb_exists (fun p => eqb x (fst p)) (elements m)).
destruct (mem x m); destruct (existsb (fun p => eqb x (fst p)) (elements m)); auto; intros.
symmetry; rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (e,He); [ intuition |].
rewrite InA_alt in He.
destruct He as ((y,e'),(Ha1,Ha2)).
compute in Ha1; destruct Ha1; subst e'.
exists (y,e); split; simpl; auto.
unfold eqb; destruct (eq_dec x y); intuition.
rewrite <- H; rewrite H0.
destruct H1 as (H1,_).
destruct H1 as ((y,e),(Ha1,Ha2)); [intuition|].
simpl in Ha2.
unfold eqb in *; destruct (eq_dec x y); auto; try discriminate.
exists e; rewrite InA_alt.
exists (y,e); intuition.
compute; auto.
Qed.
End BoolSpec.
Section Equalities.
Variable elt:Type.
(** Another characterisation of [Equal] *)
Lemma Equal_mapsto_iff : forall m1 m2 : t elt,
Equal m1 m2 <-> (forall k e, MapsTo k e m1 <-> MapsTo k e m2).
Proof.
intros m1 m2. split; [intros Heq k e|intros Hiff].
rewrite 2 find_mapsto_iff, Heq. split; auto.
intro k. rewrite eq_option_alt. intro e.
rewrite <- 2 find_mapsto_iff; auto.
Qed.
(** * Relations between [Equal], [Equiv] and [Equivb]. *)
(** First, [Equal] is [Equiv] with Leibniz on elements. *)
Lemma Equal_Equiv : forall (m m' : t elt),
Equal m m' <-> Equiv Logic.eq m m'.
Proof.
intros. rewrite Equal_mapsto_iff. split; intros.
split.
split; intros (e,Hin); exists e; [rewrite <- H|rewrite H]; auto.
intros; apply MapsTo_fun with m k; auto; rewrite H; auto.
split; intros H'.
destruct H.
assert (Hin : In k m') by (rewrite <- H; exists e; auto).
destruct Hin as (e',He').
rewrite (H0 k e e'); auto.
destruct H.
assert (Hin : In k m) by (rewrite H; exists e; auto).
destruct Hin as (e',He').
rewrite <- (H0 k e' e); auto.
Qed.
(** [Equivb] and [Equiv] and equivalent when [eq_elt] and [cmp]
are related. *)
Section Cmp.
Variable eq_elt : elt->elt->Prop.
Variable cmp : elt->elt->bool.
Definition compat_cmp :=
forall e e', cmp e e' = true <-> eq_elt e e'.
Lemma Equiv_Equivb : compat_cmp ->
forall m m', Equiv eq_elt m m' <-> Equivb cmp m m'.
Proof.
unfold Equivb, Equiv, Cmp; intuition.
red in H; rewrite H; eauto.
red in H; rewrite <-H; eauto.
Qed.
End Cmp.
(** Composition of the two last results: relation between [Equal]
and [Equivb]. *)
Lemma Equal_Equivb : forall cmp,
(forall e e', cmp e e' = true <-> e = e') ->
forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
Proof.
intros; rewrite Equal_Equiv.
apply Equiv_Equivb; auto.
Qed.
Lemma Equal_Equivb_eqdec :
forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }),
let cmp := fun e e' => if eq_elt_dec e e' then true else false in
forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
Proof.
intros; apply Equal_Equivb.
unfold cmp; clear cmp; intros.
destruct eq_elt_dec; now intuition.
Qed.
End Equalities.
(** * [Equal] is a setoid equality. *)
Lemma Equal_refl : forall (elt:Type)(m : t elt), Equal m m.
Proof. red; reflexivity. Qed.
Lemma Equal_sym : forall (elt:Type)(m m' : t elt),
Equal m m' -> Equal m' m.
Proof. unfold Equal; auto. Qed.
Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt),
Equal m m' -> Equal m' m'' -> Equal m m''.
Proof. unfold Equal; congruence. Qed.
Definition Equal_ST : forall elt:Type, Equivalence (@Equal elt).
Proof.
constructor; red; [apply Equal_refl | apply Equal_sym | apply Equal_trans].
Qed.
Add Relation key E.eq
reflexivity proved by E.eq_refl
symmetry proved by E.eq_sym
transitivity proved by E.eq_trans
as KeySetoid.
Arguments Equal {elt} m m'.
Add Parametric Relation (elt : Type) : (t elt) Equal
reflexivity proved by (@Equal_refl elt)
symmetry proved by (@Equal_sym elt)
transitivity proved by (@Equal_trans elt)
as EqualSetoid.
Add Parametric Morphism elt : (@In elt)
with signature E.eq ==> Equal ==> iff as In_m.
Proof.
unfold Equal; intros k k' Hk m m' Hm.
rewrite (In_iff m Hk), in_find_iff, in_find_iff, Hm; intuition.
Qed.
Add Parametric Morphism elt : (@MapsTo elt)
with signature E.eq ==> eq ==> Equal ==> iff as MapsTo_m.
Proof.
unfold Equal; intros k k' Hk e m m' Hm.
rewrite (MapsTo_iff m e Hk), find_mapsto_iff, find_mapsto_iff, Hm;
intuition.
Qed.
Add Parametric Morphism elt : (@Empty elt)
with signature Equal ==> iff as Empty_m.
Proof.
unfold Empty; intros m m' Hm. split; intros; intro.
rewrite <-Hm in H0; eapply H, H0.
rewrite Hm in H0; eapply H, H0.
Qed.
Add Parametric Morphism elt : (@is_empty elt)
with signature Equal ==> eq as is_empty_m.
Proof.
intros m m' Hm.
rewrite eq_bool_alt, <-is_empty_iff, <-is_empty_iff, Hm; intuition.
Qed.
Add Parametric Morphism elt : (@mem elt)
with signature E.eq ==> Equal ==> eq as mem_m.
Proof.
intros k k' Hk m m' Hm.
rewrite eq_bool_alt, <- mem_in_iff, <-mem_in_iff, Hk, Hm; intuition.
Qed.
Add Parametric Morphism elt : (@find elt)
with signature E.eq ==> Equal ==> eq as find_m.
Proof.
intros k k' Hk m m' Hm. rewrite eq_option_alt. intro e.
rewrite <- 2 find_mapsto_iff, Hk, Hm. split; auto.
Qed.
Add Parametric Morphism elt : (@add elt)
with signature E.eq ==> eq ==> Equal ==> Equal as add_m.
Proof.
intros k k' Hk e m m' Hm y.
rewrite add_o, add_o; do 2 destruct eq_dec as [|?Hnot]; auto.
elim Hnot; rewrite <-Hk; auto.
elim Hnot; rewrite Hk; auto.
Qed.
Add Parametric Morphism elt : (@remove elt)
with signature E.eq ==> Equal ==> Equal as remove_m.
Proof.
intros k k' Hk m m' Hm y.
rewrite remove_o, remove_o; do 2 destruct eq_dec as [|?Hnot]; auto.
elim Hnot; rewrite <-Hk; auto.
elim Hnot; rewrite Hk; auto.
Qed.
Add Parametric Morphism elt elt' : (@map elt elt')
with signature eq ==> Equal ==> Equal as map_m.
Proof.
intros f m m' Hm y.
rewrite map_o, map_o, Hm; auto.
Qed.
(* Later: Add Morphism cardinal *)
(* old name: *)
Notation not_find_mapsto_iff := not_find_in_iff.
End WFacts_fun.
(** * Same facts for self-contained weak sets and for full maps *)
Module WFacts (M:WS) := WFacts_fun M.E M.
Module Facts := WFacts.
(** * Additional Properties for weak maps
Results about [fold], [elements], induction principles...
*)
Module WProperties_fun (E:DecidableType)(M:WSfun E).
Module Import F:=WFacts_fun E M.
Import M.
Section Elt.
Variable elt:Type.
Definition Add x (e:elt) m m' := forall y, find y m' = find y (add x e m).
Notation eqke := (@eq_key_elt elt).
Notation eqk := (@eq_key elt).
Instance eqk_equiv : Equivalence eqk.
Proof. unfold eq_key; split; eauto. Qed.
Instance eqke_equiv : Equivalence eqke.
Proof.
unfold eq_key_elt; split; repeat red; firstorder.
eauto.
congruence.
Qed.
(** Complements about InA, NoDupA and findA *)
Lemma InA_eqke_eqk : forall k1 k2 e1 e2 l,
E.eq k1 k2 -> InA eqke (k1,e1) l -> InA eqk (k2,e2) l.
Proof.
intros k1 k2 e1 e2 l Hk. rewrite 2 InA_alt.
intros ((k',e') & (Hk',He') & H); simpl in *.
exists (k',e'); split; auto.
red; simpl; eauto.
Qed.
Lemma NoDupA_eqk_eqke : forall l, NoDupA eqk l -> NoDupA eqke l.
Proof.
induction 1; auto.
constructor; auto.
destruct x as (k,e).
eauto using InA_eqke_eqk.
Qed.
Lemma findA_rev : forall l k, NoDupA eqk l ->
findA (eqb k) l = findA (eqb k) (rev l).
Proof.
intros.
case_eq (findA (eqb k) l).
intros. symmetry.
unfold eqb.
rewrite <- findA_NoDupA, InA_rev, findA_NoDupA
by (eauto using NoDupA_rev with *); eauto.
case_eq (findA (eqb k) (rev l)); auto.
intros e.
unfold eqb.
rewrite <- findA_NoDupA, InA_rev, findA_NoDupA
by (eauto using NoDupA_rev with *).
intro Eq; rewrite Eq; auto.
Qed.
(** * Elements *)
Lemma elements_Empty : forall m:t elt, Empty m <-> elements m = nil.
Proof.
intros.
unfold Empty.
split; intros.
assert (forall a, ~ List.In a (elements m)).
red; intros.
apply (H (fst a) (snd a)).
rewrite elements_mapsto_iff.
rewrite InA_alt; exists a; auto.
split; auto; split; auto.
destruct (elements m); auto.
elim (H0 p); simpl; auto.
red; intros.
rewrite elements_mapsto_iff in H0.
rewrite InA_alt in H0; destruct H0.
rewrite H in H0; destruct H0 as (_,H0); inversion H0.
Qed.
Lemma elements_empty : elements (@empty elt) = nil.
Proof.
rewrite <-elements_Empty; apply empty_1.
Qed.
(** * Conversions between maps and association lists. *)
Definition uncurry {U V W : Type} (f : U -> V -> W) : U*V -> W :=
fun p => f (fst p) (snd p).
Definition of_list :=
List.fold_right (uncurry (@add _)) (empty elt).
Definition to_list := elements.
Lemma of_list_1 : forall l k e,
NoDupA eqk l ->
(MapsTo k e (of_list l) <-> InA eqke (k,e) l).
Proof.
induction l as [|(k',e') l IH]; simpl; intros k e Hnodup.
rewrite empty_mapsto_iff, InA_nil; intuition.
unfold uncurry; simpl.
inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
specialize (IH k e Hnodup'); clear Hnodup'.
rewrite add_mapsto_iff, InA_cons, <- IH.
unfold eq_key_elt at 1; simpl.
split; destruct 1 as [H|H]; try (intuition;fail).
destruct (eq_dec k k'); [left|right]; split; auto.
contradict Hnotin.
apply InA_eqke_eqk with k e; intuition.
Qed.
Lemma of_list_1b : forall l k,
NoDupA eqk l ->
find k (of_list l) = findA (eqb k) l.
Proof.
induction l as [|(k',e') l IH]; simpl; intros k Hnodup.
apply empty_o.
unfold uncurry; simpl.
inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
specialize (IH k Hnodup'); clear Hnodup'.
rewrite add_o, IH.
unfold eqb; do 2 destruct eq_dec as [|?Hnot]; auto; elim Hnot; eauto.
Qed.
Lemma of_list_2 : forall l, NoDupA eqk l ->
equivlistA eqke l (to_list (of_list l)).
Proof.
intros l Hnodup (k,e).
rewrite <- elements_mapsto_iff, of_list_1; intuition.
Qed.
Lemma of_list_3 : forall s, Equal (of_list (to_list s)) s.
Proof.
intros s k.
rewrite of_list_1b, elements_o; auto.
apply elements_3w.
Qed.
(** * Fold *)
(** Alternative specification via [fold_right] *)
Lemma fold_spec_right m (A:Type)(i:A)(f : key -> elt -> A -> A) :
fold f m i = List.fold_right (uncurry f) i (rev (elements m)).
Proof.
rewrite fold_1. symmetry. apply fold_left_rev_right.
Qed.
(** ** Induction principles about fold contributed by S. Lescuyer *)
(** In the following lemma, the step hypothesis is deliberately restricted
to the precise map m we are considering. *)
Lemma fold_rec :
forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A),
forall (i:A)(m:t elt),
(forall m, Empty m -> P m i) ->
(forall k e a m' m'', MapsTo k e m -> ~In k m' ->
Add k e m' m'' -> P m' a -> P m'' (f k e a)) ->
P m (fold f m i).
Proof.
intros A P f i m Hempty Hstep.
rewrite fold_spec_right.
set (F:=uncurry f).
set (l:=rev (elements m)).
assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' ->
Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)).
intros k e a m' m'' H ? ? ?; eapply Hstep; eauto.
revert H; unfold l; rewrite InA_rev, elements_mapsto_iff. auto.
assert (Hdup : NoDupA eqk l).
unfold l. apply NoDupA_rev; try red; unfold eq_key. auto with typeclass_instances.
apply elements_3w.
assert (Hsame : forall k, find k m = findA (eqb k) l).
intros k. unfold l. rewrite elements_o, findA_rev; auto.
apply elements_3w.
clearbody l. clearbody F. clear Hstep f. revert m Hsame. induction l.
(* empty *)
intros m Hsame; simpl.
apply Hempty. intros k e.
rewrite find_mapsto_iff, Hsame; simpl; discriminate.
(* step *)
intros m Hsame; destruct a as (k,e); simpl.
apply Hstep' with (of_list l); auto.
rewrite InA_cons; left; red; auto.
inversion_clear Hdup. contradict H. destruct H as (e',He').
apply InA_eqke_eqk with k e'; auto.
rewrite <- of_list_1; auto.
intro k'. rewrite Hsame, add_o, of_list_1b. simpl.
unfold eqb. do 2 destruct eq_dec as [|?Hnot]; auto; elim Hnot; eauto.
inversion_clear Hdup; auto.
apply IHl.
intros; eapply Hstep'; eauto.
inversion_clear Hdup; auto.
intros; apply of_list_1b. inversion_clear Hdup; auto.
Qed.
(** Same, with [empty] and [add] instead of [Empty] and [Add]. In this
case, [P] must be compatible with equality of sets *)
Theorem fold_rec_bis :
forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A),
forall (i:A)(m:t elt),
(forall m m' a, Equal m m' -> P m a -> P m' a) ->
(P (empty _) i) ->
(forall k e a m', MapsTo k e m -> ~In k m' ->
P m' a -> P (add k e m') (f k e a)) ->
P m (fold f m i).
Proof.
intros A P f i m Pmorphism Pempty Pstep.
apply fold_rec; intros.
apply Pmorphism with (empty _); auto. intro k. rewrite empty_o.
case_eq (find k m0); auto; intros e'; rewrite <- find_mapsto_iff.
intro H'; elim (H k e'); auto.
apply Pmorphism with (add k e m'); try intro; auto.
Qed.
Lemma fold_rec_nodep :
forall (A:Type)(P : A -> Type)(f : key -> elt -> A -> A)(i:A)(m:t elt),
P i -> (forall k e a, MapsTo k e m -> P a -> P (f k e a)) ->
P (fold f m i).
Proof.
intros; apply fold_rec_bis with (P:=fun _ => P); auto.
Qed.
(** [fold_rec_weak] is a weaker principle than [fold_rec_bis] :
the step hypothesis must here be applicable anywhere.
At the same time, it looks more like an induction principle,
and hence can be easier to use. *)
Lemma fold_rec_weak :
forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A)(i:A),
(forall m m' a, Equal m m' -> P m a -> P m' a) ->
P (empty _) i ->
(forall k e a m, ~In k m -> P m a -> P (add k e m) (f k e a)) ->
forall m, P m (fold f m i).
Proof.
intros; apply fold_rec_bis; auto.
Qed.
Lemma fold_rel :
forall (A B:Type)(R : A -> B -> Type)
(f : key -> elt -> A -> A)(g : key -> elt -> B -> B)(i : A)(j : B)
(m : t elt),
R i j ->
(forall k e a b, MapsTo k e m -> R a b -> R (f k e a) (g k e b)) ->
R (fold f m i) (fold g m j).
Proof.
intros A B R f g i j m Rempty Rstep.
rewrite 2 fold_spec_right. set (l:=rev (elements m)).
assert (Rstep' : forall k e a b, InA eqke (k,e) l ->
R a b -> R (f k e a) (g k e b)) by
(intros; apply Rstep; auto; rewrite elements_mapsto_iff, <- InA_rev; assumption).
clearbody l; clear Rstep m.
induction l; simpl; auto.
apply Rstep'; auto.
destruct a; simpl; rewrite InA_cons; left; red; auto.
Qed.
(** From the induction principle on [fold], we can deduce some general
induction principles on maps. *)
Lemma map_induction :
forall P : t elt -> Type,
(forall m, Empty m -> P m) ->
(forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') ->
forall m, P m.
Proof.
intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto.
Qed.
Lemma map_induction_bis :
forall P : t elt -> Type,
(forall m m', Equal m m' -> P m -> P m') ->
P (empty _) ->
(forall x e m, ~In x m -> P m -> P (add x e m)) ->
forall m, P m.
Proof.
intros.
apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto.
Qed.
(** [fold] can be used to reconstruct the same initial set. *)
Lemma fold_identity : forall m : t elt, Equal (fold (@add _) m (empty _)) m.
Proof.
intros.
apply fold_rec with (P:=fun m acc => Equal acc m); auto with map.
intros m' Heq k'.
rewrite empty_o.
case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff.
intro; elim (Heq k' e'); auto.
intros k e a m' m'' _ _ Hadd Heq k'.
red in Heq. rewrite Hadd, 2 add_o, Heq; auto.
Qed.
Section Fold_More.
(** ** Additional properties of fold *)
(** When a function [f] is compatible and allows transpositions, we can
compute [fold f] in any order. *)
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A).
(** This is more convenient than a [compat_op eqke ...].
In fact, every [compat_op], [compat_bool], etc, should
become a [Proper] someday. *)
Hypothesis Comp : Proper (E.eq==>eq==>eqA==>eqA) f.
Lemma fold_init :
forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i').
Proof.
intros. apply fold_rel with (R:=eqA); auto.
intros. apply Comp; auto.
Qed.
Lemma fold_Empty :
forall m i, Empty m -> eqA (fold f m i) i.
Proof.
intros. apply fold_rec_nodep with (P:=fun a => eqA a i).
reflexivity.
intros. elim (H k e); auto.
Qed.
(** As noticed by P. Casteran, asking for the general [SetoidList.transpose]
here is too restrictive. Think for instance of [f] being [M.add] :
in general, [M.add k e (M.add k e' m)] is not equivalent to
[M.add k e' (M.add k e m)]. Fortunately, we will never encounter this
situation during a real [fold], since the keys received by this [fold]
are unique. Hence we can ask the transposition property to hold only
for non-equal keys.
This idea could be push slightly further, by asking the transposition
property to hold only for (non-equal) keys living in the map given to
[fold]. Please contact us if you need such a version.
FSets could also benefit from a restricted [transpose], but for this
case the gain is unclear. *)
Definition transpose_neqkey :=
forall k k' e e' a, ~E.eq k k' ->
eqA (f k e (f k' e' a)) (f k' e' (f k e a)).
Hypothesis Tra : transpose_neqkey.
Lemma fold_commutes : forall i m k e, ~In k m ->
eqA (fold f m (f k e i)) (f k e (fold f m i)).
Proof.
intros i m k e Hnotin.
apply fold_rel with (R:= fun a b => eqA a (f k e b)); auto.
reflexivity.
intros.
transitivity (f k0 e0 (f k e b)).
apply Comp; auto.
apply Tra; auto.
contradict Hnotin; rewrite <- Hnotin; exists e0; auto.
Qed.
#[local]
Hint Resolve NoDupA_eqk_eqke NoDupA_rev elements_3w : map.
Lemma fold_Equal : forall m1 m2 i, Equal m1 m2 ->
eqA (fold f m1 i) (fold f m2 i).
Proof.
intros.
rewrite 2 fold_spec_right.
assert (NoDupA eqk (rev (elements m1))) by auto with map typeclass_instances.
assert (NoDupA eqk (rev (elements m2))) by auto with map typeclass_instances.
apply fold_right_equivlistA_restr with (R:=complement eqk)(eqA:=eqke).
auto with typeclass_instances.
auto.
2: auto with crelations.
4, 5: auto with map.
intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *; apply Comp; auto.
unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto.
intros (k,e) (k',e'); unfold eq_key, uncurry; simpl; auto.
rewrite <- NoDupA_altdef; auto.
intros (k,e).
rewrite 2 InA_rev, <- 2 elements_mapsto_iff, 2 find_mapsto_iff, H.
auto with crelations.
Qed.
Lemma fold_Equal2 : forall m1 m2 i j, Equal m1 m2 -> eqA i j ->
eqA (fold f m1 i) (fold f m2 j).
Proof.
intros.
rewrite 2 fold_spec_right.
assert (NoDupA eqk (rev (elements m1))) by auto with map typeclass_instances.
assert (NoDupA eqk (rev (elements m2))) by auto with map typeclass_instances.
apply fold_right_equivlistA_restr2 with (R:=complement eqk)(eqA:=eqke).
auto with typeclass_instances.
1, 10: auto.
2: auto with crelations.
4, 5: auto with map.
- intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *; apply Comp; auto.
- unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto.
- intros (k,e) (k',e') z z' h h'; unfold eq_key, uncurry;simpl; auto.
rewrite h'.
auto.
- rewrite <- NoDupA_altdef; auto.
- intros (k,e).
rewrite 2 InA_rev, <- 2 elements_mapsto_iff, 2 find_mapsto_iff, H.
auto with crelations.
Qed.
Lemma fold_Add : forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 ->
eqA (fold f m2 i) (f k e (fold f m1 i)).
Proof.
intros.
rewrite 2 fold_spec_right.
set (f':=uncurry f).
change (f k e (fold_right f' i (rev (elements m1))))
with (f' (k,e) (fold_right f' i (rev (elements m1)))).
assert (NoDupA eqk (rev (elements m1))) by auto with map typeclass_instances.
assert (NoDupA eqk (rev (elements m2))) by auto with map typeclass_instances.
apply fold_right_add_restr with
(R:=complement eqk)(eqA:=eqke)(eqB:=eqA).
auto with typeclass_instances.
auto.
2: auto with crelations.
4, 5: auto with map.
intros (k1,e1) (k2,e2) (Hk,He) a a' Ha; unfold f'; simpl in *. apply Comp; auto.
unfold complement, eq_key_elt, eq_key; repeat red; intuition eauto.
unfold f'; intros (k1,e1) (k2,e2); unfold eq_key, uncurry; simpl; auto.
rewrite <- NoDupA_altdef; auto.
rewrite InA_rev, <- elements_mapsto_iff. firstorder.
intros (a,b).
rewrite InA_cons, 2 InA_rev, <- 2 elements_mapsto_iff,
2 find_mapsto_iff.
unfold eq_key_elt; simpl.
rewrite H0.
rewrite add_o.
destruct (eq_dec k a) as [EQ|NEQ]; split; auto.
intros EQ'; inversion EQ'; auto.
intuition; subst; auto.
elim H. exists b; rewrite EQ; auto with map.
intuition.
elim NEQ; auto.
Qed.
Lemma fold_add : forall m k e i, ~In k m ->
eqA (fold f (add k e m) i) (f k e (fold f m i)).
Proof.
intros. apply fold_Add; try red; auto.
Qed.
End Fold_More.
(** * Cardinal *)
Lemma cardinal_fold : forall m : t elt,
cardinal m = fold (fun _ _ => S) m 0.
Proof.
intros; rewrite cardinal_1, fold_1.
symmetry; apply fold_left_length; auto.
Qed.
Lemma cardinal_Empty : forall m : t elt,
Empty m <-> cardinal m = 0.
Proof.
intros.
rewrite cardinal_1, elements_Empty.
destruct (elements m); intuition; discriminate.
Qed.
Lemma Equal_cardinal : forall m m' : t elt,
Equal m m' -> cardinal m = cardinal m'.
Proof.
intros; do 2 rewrite cardinal_fold.
apply fold_Equal with (eqA:=eq); compute; auto.
Qed.
Lemma cardinal_1 : forall m : t elt, Empty m -> cardinal m = 0.
Proof.
intros; rewrite <- cardinal_Empty; auto.
Qed.
Lemma cardinal_2 :
forall m m' x e, ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m).
Proof.
intros; do 2 rewrite cardinal_fold.
change S with ((fun _ _ => S) x e).
apply fold_Add with (eqA:=eq); compute; auto.
Qed.
Lemma cardinal_inv_1 : forall m : t elt,
cardinal m = 0 -> Empty m.
Proof.
intros; rewrite cardinal_Empty; auto.
Qed.
#[local]
Hint Resolve cardinal_inv_1 : map.
Lemma cardinal_inv_2 :
forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }.
Proof.
intros; rewrite M.cardinal_1 in *.
generalize (elements_mapsto_iff m).
destruct (elements m); try discriminate.
exists p; auto.
rewrite H0; destruct p; simpl; auto.
constructor; red; auto.
Qed.
Lemma cardinal_inv_2b :
forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }.
Proof.
intros.
generalize (@cardinal_inv_2 m); destruct cardinal.
elim H;auto.
eauto.
Qed.
(** * Additional notions over maps *)
Definition Disjoint (m m' : t elt) :=
forall k, ~(In k m /\ In k m').
Definition Partition (m m1 m2 : t elt) :=
Disjoint m1 m2 /\
(forall k e, MapsTo k e m <-> MapsTo k e m1 \/ MapsTo k e m2).
(** * Emulation of some functions lacking in the interface *)
Definition filter (f : key -> elt -> bool)(m : t elt) :=
fold (fun k e m => if f k e then add k e m else m) m (empty _).
Definition for_all (f : key -> elt -> bool)(m : t elt) :=
fold (fun k e b => if f k e then b else false) m true.
Definition exists_ (f : key -> elt -> bool)(m : t elt) :=
fold (fun k e b => if f k e then true else b) m false.
Definition partition (f : key -> elt -> bool)(m : t elt) :=
(filter f m, filter (fun k e => negb (f k e)) m).
(** [update] adds to [m1] all the bindings of [m2]. It can be seen as
an [union] operator which gives priority to its 2nd argument
in case of binding conflit. *)
Definition update (m1 m2 : t elt) := fold (@add _) m2 m1.
(** [restrict] keeps from [m1] only the bindings whose key is in [m2].
It can be seen as an [inter] operator, with priority to its 1st argument
in case of binding conflit. *)
Definition restrict (m1 m2 : t elt) := filter (fun k _ => mem k m2) m1.
(** [diff] erases from [m1] all bindings whose key is in [m2]. *)
Definition diff (m1 m2 : t elt) := filter (fun k _ => negb (mem k m2)) m1.
Section Specs.
Variable f : key -> elt -> bool.
Hypothesis Hf : Proper (E.eq==>eq==>eq) f.
Lemma filter_iff : forall m k e,
MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true.
Proof.
unfold filter.
set (f':=fun k e m => if f k e then add k e m else m).
intro m. pattern m, (fold f' m (empty _)). apply fold_rec.
intros m' Hm' k e. rewrite empty_mapsto_iff. intuition.
elim (Hm' k e); auto.
intros k e acc m1 m2 Hke Hn Hadd IH k' e'.
change (Equal m2 (add k e m1)) in Hadd; rewrite Hadd.
unfold f'; simpl.
case_eq (f k e); intros Hfke; simpl;
rewrite !add_mapsto_iff, IH; clear IH; intuition.
rewrite <- Hfke; apply Hf; auto.
destruct (eq_dec k k') as [Hk|Hk]; [left|right]; auto.
elim Hn; exists e'; rewrite Hk; auto.
assert (f k e = f k' e') by (apply Hf; auto). congruence.
Qed.
Lemma for_all_iff : forall m,
for_all f m = true <-> (forall k e, MapsTo k e m -> f k e = true).
Proof.
unfold for_all.
set (f':=fun k e b => if f k e then b else false).
intro m. pattern m, (fold f' m true). apply fold_rec.
intros m' Hm'. split; auto. intros _ k e Hke. elim (Hm' k e); auto.
intros k e b m1 m2 _ Hn Hadd IH. clear m.
change (Equal m2 (add k e m1)) in Hadd.
unfold f'; simpl. case_eq (f k e); intros Hfke.
(* f k e = true *)
rewrite IH. clear IH. split; intros Hmapsto k' e' Hke'.
rewrite Hadd, add_mapsto_iff in Hke'.
destruct Hke' as [(?,?)|(?,?)]; auto.
rewrite <- Hfke; apply Hf; auto.
apply Hmapsto. rewrite Hadd, add_mapsto_iff; right; split; auto.
contradict Hn; exists e'; rewrite Hn; auto.
(* f k e = false *)
split; try discriminate.
intros Hmapsto. rewrite <- Hfke. apply Hmapsto.
rewrite Hadd, add_mapsto_iff; auto.
Qed.
Lemma exists_iff : forall m,
exists_ f m = true <->
(exists p, MapsTo (fst p) (snd p) m /\ f (fst p) (snd p) = true).
Proof.
unfold exists_.
set (f':=fun k e b => if f k e then true else b).
intro m. pattern m, (fold f' m false). apply fold_rec.
intros m' Hm'. split; try discriminate.
intros ((k,e),(Hke,_)); simpl in *. elim (Hm' k e); auto.
intros k e b m1 m2 _ Hn Hadd IH. clear m.
change (Equal m2 (add k e m1)) in Hadd.
unfold f'; simpl. case_eq (f k e); intros Hfke.
(* f k e = true *)
split; [intros _|auto].
exists (k,e); simpl; split; auto.
rewrite Hadd, add_mapsto_iff; auto.
(* f k e = false *)
rewrite IH. clear IH. split; intros ((k',e'),(Hke1,Hke2)); simpl in *.
exists (k',e'); simpl; split; auto.
rewrite Hadd, add_mapsto_iff; right; split; auto.
contradict Hn. exists e'; rewrite Hn; auto.
rewrite Hadd, add_mapsto_iff in Hke1. destruct Hke1 as [(?,?)|(?,?)].
assert (f k' e' = f k e) by (apply Hf; auto). congruence.
exists (k',e'); auto.
Qed.
End Specs.
Lemma Disjoint_alt : forall m m',
Disjoint m m' <->
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> False).
Proof.
unfold Disjoint; split.
intros H k v v' H1 H2.
apply H with k; split.
exists v; trivial.
exists v'; trivial.
intros H k ((v,Hv),(v',Hv')).
eapply H; eauto.
Qed.
Section Partition.
Variable f : key -> elt -> bool.
Hypothesis Hf : Proper (E.eq==>eq==>eq) f.
Lemma partition_iff_1 : forall m m1 k e,
m1 = fst (partition f m) ->
(MapsTo k e m1 <-> MapsTo k e m /\ f k e = true).
Proof.
unfold partition; simpl; intros. subst m1.
apply filter_iff; auto.
Qed.
Lemma partition_iff_2 : forall m m2 k e,
m2 = snd (partition f m) ->
(MapsTo k e m2 <-> MapsTo k e m /\ f k e = false).
Proof.
unfold partition; simpl; intros. subst m2.
rewrite filter_iff.
split; intros (H,H'); split; auto.
destruct (f k e); simpl in *; auto.
rewrite H'; auto.
repeat red; intros. f_equal. apply Hf; auto.
Qed.
Lemma partition_Partition : forall m m1 m2,
partition f m = (m1,m2) -> Partition m m1 m2.
Proof.
intros. split.
rewrite Disjoint_alt. intros k e e'.
rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2)
by (rewrite H; auto).
intros (U,V) (W,Z). rewrite <- (MapsTo_fun U W) in Z; congruence.
intros k e.
rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2)
by (rewrite H; auto).
destruct (f k e); intuition.
Qed.
End Partition.
Lemma Partition_In : forall m m1 m2 k,
Partition m m1 m2 -> In k m -> {In k m1}+{In k m2}.
Proof.
intros m m1 m2 k Hm Hk.
destruct (In_dec m1 k) as [H|H]; [left|right]; auto.
destruct Hm as (Hm,Hm').
destruct Hk as (e,He); rewrite Hm' in He; destruct He.
elim H; exists e; auto.
exists e; auto.
Defined.
Lemma Disjoint_sym : forall m1 m2, Disjoint m1 m2 -> Disjoint m2 m1.
Proof.
intros m1 m2 H k (H1,H2). elim (H k); auto.
Qed.
Lemma Partition_sym : forall m m1 m2,
Partition m m1 m2 -> Partition m m2 m1.
Proof.
intros m m1 m2 (H,H'); split.
apply Disjoint_sym; auto.
intros; rewrite H'; intuition.
Qed.
Lemma Partition_Empty : forall m m1 m2, Partition m m1 m2 ->
(Empty m <-> (Empty m1 /\ Empty m2)).
Proof.
intros m m1 m2 (Hdisj,Heq). split.
intro He.
split; intros k e Hke; elim (He k e); rewrite Heq; auto.
intros (He1,He2) k e Hke. rewrite Heq in Hke. destruct Hke.
elim (He1 k e); auto.
elim (He2 k e); auto.
Qed.
Lemma Partition_Add :
forall m m' x e , ~In x m -> Add x e m m' ->
forall m1 m2, Partition m' m1 m2 ->
exists m3, (Add x e m3 m1 /\ Partition m m3 m2 \/
Add x e m3 m2 /\ Partition m m1 m3).
Proof.
unfold Partition. intros m m' x e Hn Hadd m1 m2 (Hdisj,Hor).
assert (Heq : Equal m (remove x m')).
change (Equal m' (add x e m)) in Hadd. rewrite Hadd.
intro k. rewrite remove_o, add_o.
destruct eq_dec as [He|Hne]; auto.
rewrite <- He, <- not_find_in_iff; auto.
assert (H : MapsTo x e m').
change (Equal m' (add x e m)) in Hadd; rewrite Hadd.
apply add_1; auto.
rewrite Hor in H; destruct H.
(* first case : x in m1 *)
exists (remove x m1); left. split; [|split].
(* add *)
change (Equal m1 (add x e (remove x m1))).
intro k.
rewrite add_o, remove_o.
destruct eq_dec as [He|Hne]; auto.
rewrite <- He; apply find_1; auto.
(* disjoint *)
intros k (H1,H2). elim (Hdisj k). split; auto.
rewrite remove_in_iff in H1; destruct H1; auto.
(* mapsto *)
intros k' e'.
rewrite Heq, 2 remove_mapsto_iff, Hor.
intuition.
elim (Hdisj x); split; [exists e|exists e']; auto.
apply MapsTo_1 with k'; auto.
(* second case : x in m2 *)
exists (remove x m2); right. split; [|split].
(* add *)
change (Equal m2 (add x e (remove x m2))).
intro k.
rewrite add_o, remove_o.
destruct eq_dec as [He|Hne]; auto.
rewrite <- He; apply find_1; auto.
(* disjoint *)
intros k (H1,H2). elim (Hdisj k). split; auto.
rewrite remove_in_iff in H2; destruct H2; auto.
(* mapsto *)
intros k' e'.
rewrite Heq, 2 remove_mapsto_iff, Hor.
intuition.
elim (Hdisj x); split; [exists e'|exists e]; auto.
apply MapsTo_1 with k'; auto.
Qed.
Lemma Partition_fold :
forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A),
Proper (E.eq==>eq==>eqA==>eqA) f ->
transpose_neqkey eqA f ->
forall m m1 m2 i,
Partition m m1 m2 ->
eqA (fold f m i) (fold f m1 (fold f m2 i)).
Proof.
intros A eqA st f Comp Tra.
induction m as [m Hm|m m' IH k e Hn Hadd] using map_induction.
intros m1 m2 i Hp. rewrite (fold_Empty (eqA:=eqA)); auto.
rewrite (Partition_Empty Hp) in Hm. destruct Hm.
rewrite 2 (fold_Empty (eqA:=eqA)); auto. reflexivity.
intros m1 m2 i Hp.
destruct (Partition_Add Hn Hadd Hp) as (m3,[(Hadd',Hp')|(Hadd',Hp')]).
(* fst case: m3 is (k,e)::m1 *)
assert (~In k m3).
contradict Hn. destruct Hn as (e',He').
destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto.
transitivity (f k e (fold f m i)).
apply fold_Add with (eqA:=eqA); auto.
symmetry.
transitivity (f k e (fold f m3 (fold f m2 i))).
apply fold_Add with (eqA:=eqA); auto.
apply Comp; auto.
symmetry; apply IH; auto.
(* snd case: m3 is (k,e)::m2 *)
assert (~In k m3).
contradict Hn. destruct Hn as (e',He').
destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto.
assert (~In k m1).
contradict Hn. destruct Hn as (e',He').
destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto.
transitivity (f k e (fold f m i)).
apply fold_Add with (eqA:=eqA); auto.
transitivity (f k e (fold f m1 (fold f m3 i))).
apply Comp; auto using IH.
transitivity (fold f m1 (f k e (fold f m3 i))).
symmetry.
apply fold_commutes with (eqA:=eqA); auto.
apply fold_init with (eqA:=eqA); auto.
symmetry.
apply fold_Add with (eqA:=eqA); auto.
Qed.
Lemma Partition_cardinal : forall m m1 m2, Partition m m1 m2 ->
cardinal m = cardinal m1 + cardinal m2.
Proof.
intros.
rewrite (cardinal_fold m), (cardinal_fold m1).
set (f:=fun (_:key)(_:elt)=>S).
setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)).
rewrite <- cardinal_fold.
apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto.
apply Partition_fold with (eqA:=eq); repeat red; auto.
Qed.
Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 ->
let f := fun k (_:elt) => mem k m1 in
Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)).
Proof.
intros m m1 m2 Hm f.
assert (Hf : Proper (E.eq==>eq==>eq) f).
intros k k' Hk e e' _; unfold f; rewrite Hk; auto.
set (m1':= fst (partition f m)).
set (m2':= snd (partition f m)).
split; rewrite Equal_mapsto_iff; intros k e.
rewrite (@partition_iff_1 f Hf m m1') by auto.
unfold f.
rewrite <- mem_in_iff.
destruct Hm as (Hm,Hm').
rewrite Hm'.
intuition.
exists e; auto.
elim (Hm k); split; auto; exists e; auto.
rewrite (@partition_iff_2 f Hf m m2') by auto.
unfold f.
rewrite <- not_mem_in_iff.
destruct Hm as (Hm,Hm').
rewrite Hm'.
intuition.
elim (Hm k); split; auto; exists e; auto.
elim H1; exists e; auto.
Qed.
Lemma update_mapsto_iff : forall m m' k e,
MapsTo k e (update m m') <->
(MapsTo k e m' \/ (MapsTo k e m /\ ~In k m')).
Proof.
unfold update.
intros m m'.
pattern m', (fold (@add _) m' m). apply fold_rec.
intros m0 Hm0 k e.
assert (~In k m0) by (intros (e0,He0); apply (Hm0 k e0); auto).
intuition.
elim (Hm0 k e); auto.
intros k e m0 m1 m2 _ Hn Hadd IH k' e'.
change (Equal m2 (add k e m1)) in Hadd.
rewrite Hadd, 2 add_mapsto_iff, IH, add_in_iff. clear IH. intuition.
Qed.
Lemma update_dec : forall m m' k e, MapsTo k e (update m m') ->
{ MapsTo k e m' } + { MapsTo k e m /\ ~In k m'}.
Proof.
intros m m' k e H. rewrite update_mapsto_iff in H.
destruct (In_dec m' k) as [H'|H']; [left|right]; intuition.
elim H'; exists e; auto.
Defined.
Lemma update_in_iff : forall m m' k,
In k (update m m') <-> In k m \/ In k m'.
Proof.
intros m m' k. split.
intros (e,H); rewrite update_mapsto_iff in H.
destruct H; [right|left]; exists e; intuition.
destruct (In_dec m' k) as [H|H].
destruct H as (e,H). intros _; exists e.
rewrite update_mapsto_iff; left; auto.
destruct 1 as [H'|H']; [|elim H; auto].
destruct H' as (e,H'). exists e.
rewrite update_mapsto_iff; right; auto.
Qed.
Lemma diff_mapsto_iff : forall m m' k e,
MapsTo k e (diff m m') <-> MapsTo k e m /\ ~In k m'.
Proof.
intros m m' k e.
unfold diff.
rewrite filter_iff.
intuition.
rewrite mem_1 in *; auto; discriminate.
intros ? ? Hk _ _ _; rewrite Hk; auto.
Qed.
Lemma diff_in_iff : forall m m' k,
In k (diff m m') <-> In k m /\ ~In k m'.
Proof.
intros m m' k. split.
intros (e,H); rewrite diff_mapsto_iff in H.
destruct H; split; auto. exists e; auto.
intros ((e,H),H'); exists e; rewrite diff_mapsto_iff; auto.
Qed.
Lemma restrict_mapsto_iff : forall m m' k e,
MapsTo k e (restrict m m') <-> MapsTo k e m /\ In k m'.
Proof.
intros m m' k e.
unfold restrict.
rewrite filter_iff.
intuition.
intros ? ? Hk _ _ _; rewrite Hk; auto.
Qed.
Lemma restrict_in_iff : forall m m' k,
In k (restrict m m') <-> In k m /\ In k m'.
Proof.
intros m m' k. split.
intros (e,H); rewrite restrict_mapsto_iff in H.
destruct H; split; auto. exists e; auto.
intros ((e,H),H'); exists e; rewrite restrict_mapsto_iff; auto.
Qed.
(** specialized versions analyzing only keys (resp. elements) *)
Definition filter_dom (f : key -> bool) := filter (fun k _ => f k).
Definition filter_range (f : elt -> bool) := filter (fun _ => f).
Definition for_all_dom (f : key -> bool) := for_all (fun k _ => f k).
Definition for_all_range (f : elt -> bool) := for_all (fun _ => f).
Definition exists_dom (f : key -> bool) := exists_ (fun k _ => f k).
Definition exists_range (f : elt -> bool) := exists_ (fun _ => f).
Definition partition_dom (f : key -> bool) := partition (fun k _ => f k).
Definition partition_range (f : elt -> bool) := partition (fun _ => f).
End Elt.
Add Parametric Morphism elt : (@cardinal elt)
with signature Equal ==> eq as cardinal_m.
Proof. intros; apply Equal_cardinal; auto. Qed.
Add Parametric Morphism elt : (@Disjoint elt)
with signature Equal ==> Equal ==> iff as Disjoint_m.
Proof.
intros m1 m1' Hm1 m2 m2' Hm2. unfold Disjoint. split; intros.
rewrite <- Hm1, <- Hm2; auto.
rewrite Hm1, Hm2; auto.
Qed.
Add Parametric Morphism elt : (@Partition elt)
with signature Equal ==> Equal ==> Equal ==> iff as Partition_m.
Proof.
intros m1 m1' Hm1 m2 m2' Hm2 m3 m3' Hm3. unfold Partition.
rewrite <- Hm2, <- Hm3.
split; intros (H,H'); split; auto; intros.
rewrite <- Hm1, <- Hm2, <- Hm3; auto.
rewrite Hm1, Hm2, Hm3; auto.
Qed.
Add Parametric Morphism elt : (@update elt)
with signature Equal ==> Equal ==> Equal as update_m.
Proof.
intros m1 m1' Hm1 m2 m2' Hm2.
setoid_replace (update m1 m2) with (update m1' m2); unfold update.
apply fold_Equal with (eqA:=Equal); auto.
intros k k' Hk e e' He m m' Hm; rewrite Hk,He,Hm; red; auto.
intros k k' e e' i Hneq x.
rewrite !add_o; do 2 destruct eq_dec; auto. elim Hneq; eauto.
apply fold_init with (eqA:=Equal); auto.
intros k k' Hk e e' He m m' Hm; rewrite Hk,He,Hm; red; auto.
Qed.
Add Parametric Morphism elt : (@restrict elt)
with signature Equal ==> Equal ==> Equal as restrict_m.
Proof.
intros m1 m1' Hm1 m2 m2' Hm2.
setoid_replace (restrict m1 m2) with (restrict m1' m2);
unfold restrict, filter.
apply fold_rel with (R:=Equal); try red; auto.
intros k e i i' H Hii' x.
pattern (mem k m2); rewrite Hm2. (* UGLY, see with Matthieu *)
destruct mem; rewrite Hii'; auto.
apply fold_Equal with (eqA:=Equal); auto.
intros k k' Hk e e' He m m' Hm; simpl in *.
pattern (mem k m2); rewrite Hk. (* idem *)
destruct mem; rewrite ?Hk,?He,Hm; red; auto.
intros k k' e e' i Hneq x.
case_eq (mem k m2); case_eq (mem k' m2); intros; auto.
rewrite !add_o; do 2 destruct eq_dec; auto. elim Hneq; eauto.
Qed.
Add Parametric Morphism elt : (@diff elt)
with signature Equal ==> Equal ==> Equal as diff_m.
Proof.
intros m1 m1' Hm1 m2 m2' Hm2.
setoid_replace (diff m1 m2) with (diff m1' m2);
unfold diff, filter.
apply fold_rel with (R:=Equal); try red; auto.
intros k e i i' H Hii' x.
pattern (mem k m2); rewrite Hm2. (* idem *)
destruct mem; simpl; rewrite Hii'; auto.
apply fold_Equal with (eqA:=Equal); auto.
intros k k' Hk e e' He m m' Hm; simpl in *.
pattern (mem k m2); rewrite Hk. (* idem *)
destruct mem; simpl; rewrite ?Hk,?He,Hm; red; auto.
intros k k' e e' i Hneq x.
case_eq (mem k m2); case_eq (mem k' m2); intros; simpl; auto.
rewrite !add_o; do 2 destruct eq_dec; auto. elim Hneq; eauto.
Qed.
End WProperties_fun.
(** * Same Properties for self-contained weak maps and for full maps *)
Module WProperties (M:WS) := WProperties_fun M.E M.
Module Properties := WProperties.
(** * Properties specific to maps with ordered keys *)
Module OrdProperties (M:S).
Module Import ME := OrderedTypeFacts M.E.
Module Import O:=KeyOrderedType M.E.
Module Import P:=Properties M.
Import F.
Import M.
Section Elt.
Variable elt:Type.
Notation eqke := (@eqke elt).
Notation eqk := (@eqk elt).
Notation ltk := (@ltk elt).
Notation cardinal := (@cardinal elt).
Notation Equal := (@Equal elt).
Notation Add := (@Add elt).
Definition Above x (m:t elt) := forall y, In y m -> E.lt y x.
Definition Below x (m:t elt) := forall y, In y m -> E.lt x y.
Section Elements.
Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt),
sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'.
Proof.
apply SortA_equivlistA_eqlistA; auto with typeclass_instances.
Qed.
Ltac clean_eauto := unfold O.eqke, O.ltk; simpl; intuition; eauto.
Definition gtb (p p':key*elt) :=
match E.compare (fst p) (fst p') with GT _ => true | _ => false end.
Definition leb p := fun p' => negb (gtb p p').
Definition elements_lt p m := List.filter (gtb p) (elements m).
Definition elements_ge p m := List.filter (leb p) (elements m).
Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p.
Proof.
intros (x,e) (y,e'); unfold gtb, O.ltk; simpl.
destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p.
Proof.
intros (x,e) (y,e'); unfold leb, gtb, O.ltk; simpl.
destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
Lemma gtb_compat : forall p, Proper (eqke==>eq) (gtb p).
Proof.
red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H.
generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e''));
destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); auto.
unfold O.ltk in *; simpl in *; intros.
symmetry; rewrite H2.
apply ME.eq_lt with a; auto with ordered_type.
rewrite <- H1; auto.
unfold O.ltk in *; simpl in *; intros.
rewrite H1.
apply ME.eq_lt with b; auto.
rewrite <- H2; auto.
Qed.
Lemma leb_compat : forall p, Proper (eqke==>eq) (leb p).
Proof.
red; intros x a b H.
unfold leb; f_equal; apply gtb_compat; auto.
Qed.
#[local]
Hint Resolve gtb_compat leb_compat elements_3 : map.
Lemma elements_split : forall p m,
elements m = elements_lt p m ++ elements_ge p m.
Proof.
unfold elements_lt, elements_ge, leb; intros.
apply filter_split with (eqA:=eqk) (ltA:=ltk).
1-3: auto with typeclass_instances.
2: auto with map.
intros; destruct x; destruct y; destruct p.
rewrite gtb_1 in H; unfold O.ltk in H; simpl in *.
assert (~ltk (t1,e0) (k,e1)).
unfold gtb, O.ltk in *; simpl in *.
destruct (E.compare k t1); intuition; try discriminate; ME.order.
unfold O.ltk in *; simpl in *; ME.order.
Qed.
Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' ->
eqlistA eqke (elements m')
(elements_lt (x,e) m ++ (x,e):: elements_ge (x,e) m).
Proof.
intros; unfold elements_lt, elements_ge.
apply sort_equivlistA_eqlistA. auto with map.
apply (@SortA_app _ eqke). auto with typeclass_instances.
apply (@filter_sort _ eqke). 1-3: auto with typeclass_instances. auto with map.
constructor; auto with map.
apply (@filter_sort _ eqke). 1-3: auto with typeclass_instances. auto with map.
rewrite (@InfA_alt _ eqke). 2-4: auto with typeclass_instances.
intros.
rewrite filter_InA in H1 by auto with map. destruct H1.
rewrite leb_1 in H2.
destruct y; unfold O.ltk in *; simpl in *.
rewrite <- elements_mapsto_iff in H1.
assert (~E.eq x t0).
contradict H.
exists e0; apply MapsTo_1 with t0; auto with ordered_type.
ME.order.
apply (@filter_sort _ eqke). 1-3: auto with typeclass_instances. auto with map.
intros.
rewrite filter_InA in H1 by auto with map. destruct H1.
rewrite gtb_1 in H3.
destruct y; destruct x0; unfold O.ltk in *; simpl in *.
inversion_clear H2.
red in H4; simpl in *; destruct H4.
ME.order.
rewrite filter_InA in H4 by auto with map. destruct H4.
rewrite leb_1 in H4.
unfold O.ltk in *; simpl in *; ME.order.
red; intros a; destruct a.
rewrite InA_app_iff, InA_cons, 2 filter_InA,
<-2 elements_mapsto_iff, leb_1, gtb_1,
find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
add_mapsto_iff by auto with map.
unfold O.eqke, O.ltk; simpl.
destruct (E.compare t0 x); intuition; try fold (~E.eq x t0); auto with ordered_type.
- elim H; exists e0; apply MapsTo_1 with t0; auto.
- fold (~E.lt t0 x); auto with ordered_type.
Qed.
Lemma elements_Add_Above : forall m m' x e,
Above x m -> Add x e m m' ->
eqlistA eqke (elements m') (elements m ++ (x,e)::nil).
Proof.
intros.
apply sort_equivlistA_eqlistA. auto with map.
apply (@SortA_app _ eqke). auto with typeclass_instances. auto with map. auto.
intros.
inversion_clear H2.
destruct x0; destruct y.
rewrite <- elements_mapsto_iff in H1.
unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
apply ME.lt_eq with x; auto with ordered_type.
apply H; firstorder.
inversion H3.
red; intros a; destruct a.
rewrite InA_app_iff, InA_cons, InA_nil, <- 2 elements_mapsto_iff,
find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
add_mapsto_iff.
unfold O.eqke; simpl. intuition.
destruct (E.eq_dec x t0) as [Heq|Hneq]; auto.
exfalso.
assert (In t0 m).
exists e0; auto.
generalize (H t0 H1).
ME.order.
Qed.
Lemma elements_Add_Below : forall m m' x e,
Below x m -> Add x e m m' ->
eqlistA eqke (elements m') ((x,e)::elements m).
Proof.
intros.
apply sort_equivlistA_eqlistA. auto with map.
change (sort ltk (((x,e)::nil) ++ elements m)).
apply (@SortA_app _ eqke). auto with typeclass_instances. auto. auto with map.
intros.
inversion_clear H1.
destruct y; destruct x0.
rewrite <- elements_mapsto_iff in H2.
unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
apply ME.eq_lt with x; auto.
apply H; firstorder.
inversion H3.
red; intros a; destruct a.
rewrite InA_cons, <- 2 elements_mapsto_iff,
find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
add_mapsto_iff.
unfold O.eqke; simpl. intuition.
destruct (E.eq_dec x t0) as [Heq|Hneq]; auto.
exfalso.
assert (In t0 m).
exists e0; auto.
generalize (H t0 H1).
ME.order.
Qed.
Lemma elements_Equal_eqlistA : forall (m m': t elt),
Equal m m' -> eqlistA eqke (elements m) (elements m').
Proof.
intros.
apply sort_equivlistA_eqlistA. 1-2: auto with map.
red; intros.
destruct x; do 2 rewrite <- elements_mapsto_iff.
do 2 rewrite find_mapsto_iff; rewrite H; split; auto.
Qed.
End Elements.
Section Min_Max_Elt.
(** We emulate two [max_elt] and [min_elt] functions. *)
Fixpoint max_elt_aux (l:list (key*elt)) := match l with
| nil => None
| (x,e)::nil => Some (x,e)
| (x,e)::l => max_elt_aux l
end.
Definition max_elt m := max_elt_aux (elements m).
Lemma max_elt_Above :
forall m x e, max_elt m = Some (x,e) -> Above x (remove x m).
Proof.
red; intros.
rewrite remove_in_iff in H0.
destruct H0.
rewrite elements_in_iff in H1.
destruct H1.
unfold max_elt in *.
generalize (elements_3 m).
revert x e H y x0 H0 H1.
induction (elements m).
simpl; intros; try discriminate.
intros.
destruct a; destruct l; simpl in *.
injection H as [= -> ->].
inversion_clear H1.
red in H; simpl in *; intuition.
elim H0; eauto with ordered_type.
inversion H.
change (max_elt_aux (p::l) = Some (x,e)) in H.
generalize (IHl x e H); clear IHl; intros IHl.
inversion_clear H1; [ | inversion_clear H2; eauto ].
red in H3; simpl in H3; destruct H3.
destruct p as (p1,p2).
destruct (E.eq_dec p1 x) as [Heq|Hneq].
apply ME.lt_eq with p1; auto.
inversion_clear H2.
inversion_clear H5.
red in H2; simpl in H2; ME.order.
apply E.lt_trans with p1; auto.
inversion_clear H2.
inversion_clear H5.
red in H2; simpl in H2; ME.order.
eapply IHl; eauto with ordered_type.
econstructor; eauto.
red; eauto with ordered_type.
inversion H2; auto.
Qed.
Lemma max_elt_MapsTo :
forall m x e, max_elt m = Some (x,e) -> MapsTo x e m.
Proof.
intros.
unfold max_elt in *.
rewrite elements_mapsto_iff.
induction (elements m).
simpl; try discriminate.
destruct a; destruct l; simpl in *.
injection H; intros; subst; constructor; red; auto with ordered_type.
constructor 2; auto.
Qed.
Lemma max_elt_Empty :
forall m, max_elt m = None -> Empty m.
Proof.
intros.
unfold max_elt in *.
rewrite elements_Empty.
induction (elements m); auto.
destruct a; destruct l; simpl in *; try discriminate.
assert (H':=IHl H); discriminate.
Qed.
Definition min_elt m : option (key*elt) := match elements m with
| nil => None
| (x,e)::_ => Some (x,e)
end.
Lemma min_elt_Below :
forall m x e, min_elt m = Some (x,e) -> Below x (remove x m).
Proof.
unfold min_elt, Below; intros.
rewrite remove_in_iff in H0; destruct H0.
rewrite elements_in_iff in H1.
destruct H1.
generalize (elements_3 m).
destruct (elements m).
try discriminate.
destruct p; injection H as [= -> ->]; intros H4.
inversion_clear H1 as [? ? H2|? ? H2].
red in H2; destruct H2; simpl in *; ME.order.
inversion_clear H4. rename H1 into H3.
rewrite (@InfA_alt _ eqke) in H3 by auto with typeclass_instances.
apply (H3 (y,x0)); auto.
Qed.
Lemma min_elt_MapsTo :
forall m x e, min_elt m = Some (x,e) -> MapsTo x e m.
Proof.
intros.
unfold min_elt in *.
rewrite elements_mapsto_iff.
destruct (elements m).
simpl; try discriminate.
destruct p; simpl in *.
injection H; intros; subst; constructor; red; auto with ordered_type.
Qed.
Lemma min_elt_Empty :
forall m, min_elt m = None -> Empty m.
Proof.
intros.
unfold min_elt in *.
rewrite elements_Empty.
destruct (elements m); auto.
destruct p; simpl in *; discriminate.
Qed.
End Min_Max_Elt.
Section Induction_Principles.
Lemma map_induction_max :
forall P : t elt -> Type,
(forall m, Empty m -> P m) ->
(forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') ->
forall m, P m.
Proof.
intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
apply X; apply cardinal_inv_1; auto.
case_eq (max_elt m); intros.
destruct p.
assert (Add k e (remove k m) m).
red; intros.
rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
apply find_1; apply MapsTo_1 with k; auto.
apply max_elt_MapsTo; auto.
apply X0 with (remove k m) k e; auto with map.
apply IHn.
assert (S n = S (cardinal (remove k m))).
rewrite Heqn.
eapply cardinal_2; eauto with map ordered_type.
inversion H1; auto.
eapply max_elt_Above; eauto.
apply X; apply max_elt_Empty; auto.
Qed.
Lemma map_induction_min :
forall P : t elt -> Type,
(forall m, Empty m -> P m) ->
(forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') ->
forall m, P m.
Proof.
intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
apply X; apply cardinal_inv_1; auto.
case_eq (min_elt m); intros.
destruct p.
assert (Add k e (remove k m) m).
red; intros.
rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
apply find_1; apply MapsTo_1 with k; auto.
apply min_elt_MapsTo; auto.
apply X0 with (remove k m) k e; auto.
apply IHn.
assert (S n = S (cardinal (remove k m))).
rewrite Heqn.
eapply cardinal_2; eauto with map ordered_type.
inversion H1; auto.
eapply min_elt_Below; eauto.
apply X; apply min_elt_Empty; auto.
Qed.
End Induction_Principles.
Section Fold_properties.
(** The following lemma has already been proved on Weak Maps,
but with one additional hypothesis (some [transpose] fact). *)
Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
(f:key->elt->A->A)(i:A),
Proper (E.eq==>eq==>eqA==>eqA) f ->
Equal m1 m2 ->
eqA (fold f m1 i) (fold f m2 i).
Proof.
intros m1 m2 A eqA st f i Hf Heq.
rewrite 2 fold_spec_right.
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
intros (k,e) (k',e') (Hk,He) a a' Ha; simpl in *; apply Hf; auto.
apply eqlistA_rev. apply elements_Equal_eqlistA. auto.
Qed.
Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
(f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f),
Above x m1 -> Add x e m1 m2 ->
eqA (fold f m2 i) (f x e (fold f m1 i)).
Proof.
intros. rewrite 2 fold_spec_right. set (f':=uncurry f).
transitivity (fold_right f' i (rev (elements m1 ++ (x,e)::nil))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *. apply P; auto.
apply eqlistA_rev.
apply elements_Add_Above; auto.
rewrite distr_rev; simpl.
reflexivity.
Qed.
Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
(f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f),
Below x m1 -> Add x e m1 m2 ->
eqA (fold f m2 i) (fold f m1 (f x e i)).
Proof.
intros. rewrite 2 fold_spec_right. set (f':=uncurry f).
transitivity (fold_right f' i (rev (((x,e)::nil)++elements m1))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *; apply P; auto.
apply eqlistA_rev.
simpl; apply elements_Add_Below; auto.
rewrite distr_rev; simpl.
rewrite fold_right_app.
reflexivity.
Qed.
End Fold_properties.
End Elt.
End OrdProperties.
|