1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Finite map library. *)
(** * FMapFullAVL
This file contains some complements to [FMapAVL].
- Functor [AvlProofs] proves that trees of [FMapAVL] are not only
binary search trees, but moreover well-balanced ones. This is done
by proving that all operations preserve the balancing.
- We then pack the previous elements in a [IntMake] functor
similar to the one of [FMapAVL], but richer.
- In final [IntMake_ord] functor, the [compare] function is
different from the one in [FMapAVL]: this non-structural
version is closer to the original Ocaml code.
*)
Require Import FunInd Recdef FMapInterface FMapList ZArith Int FMapAVL Lia.
Set Implicit Arguments.
Unset Strict Implicit.
Module AvlProofs (Import I:Int)(X: OrderedType).
Module Import Raw := Raw I X.
Module Import II:=MoreInt(I).
Import Raw.Proofs.
Local Open Scope pair_scope.
Local Open Scope Int_scope.
Ltac omega_max := i2z_refl; lia.
Section Elt.
Variable elt : Type.
Implicit Types m r : t elt.
(** * AVL trees *)
(** [avl s] : [s] is a properly balanced AVL tree,
i.e. for any node the heights of the two children
differ by at most 2 *)
Inductive avl : t elt -> Prop :=
| RBLeaf : avl (Leaf _)
| RBNode : forall x e l r h,
avl l ->
avl r ->
-(2) <= height l - height r <= 2 ->
h = max (height l) (height r) + 1 ->
avl (Node l x e r h).
(** * Automation and dedicated tactics about [avl]. *)
#[local]
Hint Constructors avl : core.
Lemma height_non_negative : forall (s : t elt), avl s ->
height s >= 0.
Proof.
induction s; simpl; intros. now apply Z.le_ge.
inv avl; intuition; omega_max.
Qed.
Ltac avl_nn_hyp H :=
let nz := fresh "nz" in assert (nz := height_non_negative H).
Ltac avl_nn h :=
let t := type of h in
match type of t with
| Prop => avl_nn_hyp h
| _ => match goal with H : avl h |- _ => avl_nn_hyp H end
end.
(* Repeat the previous tactic.
Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
Ltac avl_nns :=
match goal with
| H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
| _ => idtac
end.
(** * Basic results about [avl], [height] *)
Lemma avl_node : forall x e l r, avl l -> avl r ->
-(2) <= height l - height r <= 2 ->
avl (Node l x e r (max (height l) (height r) + 1)).
Proof.
intros; auto.
Qed.
#[local]
Hint Resolve avl_node : core.
(** Results about [height] *)
Lemma height_0 : forall l, avl l -> height l = 0 ->
l = Leaf _.
Proof.
destruct 1; intuition; simpl in *.
avl_nns; simpl in *; exfalso; omega_max.
Qed.
(** * Empty map *)
Lemma empty_avl : avl (empty elt).
Proof.
unfold empty; auto.
Qed.
(** * Helper functions *)
Lemma create_avl :
forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
avl (create l x e r).
Proof.
unfold create; auto.
Qed.
Lemma create_height :
forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
height (create l x e r) = max (height l) (height r) + 1.
Proof.
unfold create; intros; auto.
Qed.
Lemma bal_avl : forall l x e r, avl l -> avl r ->
-(3) <= height l - height r <= 3 -> avl (bal l x e r).
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf;
inv avl; simpl in *;
match goal with |- avl (assert_false _ _ _ _) => avl_nns
| _ => repeat apply create_avl; simpl in *; auto
end; omega_max.
Qed.
Lemma bal_height_1 : forall l x e r, avl l -> avl r ->
-(3) <= height l - height r <= 3 ->
0 <= height (bal l x e r) - max (height l) (height r) <= 1.
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf;
inv avl; avl_nns; simpl in *; omega_max.
Qed.
Lemma bal_height_2 :
forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
height (bal l x e r) == max (height l) (height r) +1.
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf;
inv avl; avl_nns; simpl in *; omega_max.
Qed.
Ltac omega_bal := match goal with
| H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?e ?r ] =>
generalize (bal_height_1 x e H H') (bal_height_2 x e H H');
omega_max
end.
(** * Insertion *)
Lemma add_avl_1 : forall m x e, avl m ->
avl (add x e m) /\ 0 <= height (add x e m) - height m <= 1.
Proof.
intros m x e; functional induction (add x e m); intros; inv avl; simpl in *.
intuition; try constructor; simpl; auto; try omega_max.
(* LT *)
destruct IHt; auto.
split.
apply bal_avl; auto; omega_max.
omega_bal.
(* EQ *)
intuition; omega_max.
(* GT *)
destruct IHt; auto.
split.
apply bal_avl; auto; omega_max.
omega_bal.
Qed.
Lemma add_avl : forall m x e, avl m -> avl (add x e m).
Proof.
intros; generalize (add_avl_1 x e H); intuition.
Qed.
#[local]
Hint Resolve add_avl : core.
(** * Extraction of minimum binding *)
Lemma remove_min_avl_1 : forall l x e r h, avl (Node l x e r h) ->
avl (remove_min l x e r)#1 /\
0 <= height (Node l x e r h) - height (remove_min l x e r)#1 <= 1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
inv avl; simpl in *; split; auto.
avl_nns; omega_max.
inversion_clear H.
rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto.
split; simpl in *.
apply bal_avl; auto; omega_max.
omega_bal.
Qed.
Lemma remove_min_avl : forall l x e r h, avl (Node l x e r h) ->
avl (remove_min l x e r)#1.
Proof.
intros; generalize (remove_min_avl_1 H); intuition.
Qed.
(** * Merging two trees *)
Lemma merge_avl_1 : forall m1 m2, avl m1 -> avl m2 ->
-(2) <= height m1 - height m2 <= 2 ->
avl (merge m1 m2) /\
0<= height (merge m1 m2) - max (height m1) (height m2) <=1.
Proof.
intros m1 m2; functional induction (merge m1 m2); intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
simpl; split; auto; avl_nns; omega_max.
simpl; split; auto; avl_nns; omega_max.
generalize (remove_min_avl_1 H0).
rewrite e1; destruct 1.
split.
apply bal_avl; auto.
omega_max.
omega_bal.
Qed.
Lemma merge_avl : forall m1 m2, avl m1 -> avl m2 ->
-(2) <= height m1 - height m2 <= 2 -> avl (merge m1 m2).
Proof.
intros; generalize (merge_avl_1 H H0 H1); intuition.
Qed.
(** * Deletion *)
Lemma remove_avl_1 : forall m x, avl m ->
avl (remove x m) /\ 0 <= height m - height (remove x m) <= 1.
Proof.
intros m x; functional induction (remove x m); intros.
split; auto; omega_max.
(* LT *)
inv avl.
destruct (IHt H0).
split.
apply bal_avl; auto.
omega_max.
omega_bal.
(* EQ *)
inv avl.
generalize (merge_avl_1 H0 H1 H2).
intuition omega_max.
(* GT *)
inv avl.
destruct (IHt H1).
split.
apply bal_avl; auto.
omega_max.
omega_bal.
Qed.
Lemma remove_avl : forall m x, avl m -> avl (remove x m).
Proof.
intros; generalize (remove_avl_1 x H); intuition.
Qed.
#[local]
Hint Resolve remove_avl : core.
(** * Join *)
Lemma join_avl_1 : forall l x d r, avl l -> avl r ->
avl (join l x d r) /\
0<= height (join l x d r) - max (height l) (height r) <= 1.
Proof.
join_tac.
split; simpl; auto.
destruct (add_avl_1 x d H0).
avl_nns; omega_max.
set (l:=Node ll lx ld lr lh) in *.
split; auto.
destruct (add_avl_1 x d H).
simpl (height (Leaf elt)).
avl_nns; omega_max.
inversion_clear H.
assert (height (Node rl rx rd rr rh) = rh); auto.
set (r := Node rl rx rd rr rh) in *; clearbody r.
destruct (Hlr x d r H2 H0); clear Hrl Hlr.
set (j := join lr x d r) in *; clearbody j.
simpl.
assert (-(3) <= height ll - height j <= 3) by omega_max.
split.
apply bal_avl; auto.
omega_bal.
inversion_clear H0.
assert (height (Node ll lx ld lr lh) = lh); auto.
set (l := Node ll lx ld lr lh) in *; clearbody l.
destruct (Hrl H H1); clear Hrl Hlr.
set (j := join l x d rl) in *; clearbody j.
simpl.
assert (-(3) <= height j - height rr <= 3) by omega_max.
split.
apply bal_avl; auto.
omega_bal.
clear Hrl Hlr.
assert (height (Node ll lx ld lr lh) = lh); auto.
assert (height (Node rl rx rd rr rh) = rh); auto.
set (l := Node ll lx ld lr lh) in *; clearbody l.
set (r := Node rl rx rd rr rh) in *; clearbody r.
assert (-(2) <= height l - height r <= 2) by omega_max.
split.
apply create_avl; auto.
rewrite create_height; auto; omega_max.
Qed.
Lemma join_avl : forall l x d r, avl l -> avl r -> avl (join l x d r).
Proof.
intros; destruct (join_avl_1 x d H H0); auto.
Qed.
#[local]
Hint Resolve join_avl : core.
(** concat *)
Lemma concat_avl : forall m1 m2, avl m1 -> avl m2 -> avl (concat m1 m2).
Proof.
intros m1 m2; functional induction (concat m1 m2); auto.
intros; apply join_avl; auto.
generalize (remove_min_avl H0); rewrite e1; simpl; auto.
Qed.
#[local]
Hint Resolve concat_avl : core.
(** split *)
Lemma split_avl : forall m x, avl m ->
avl (split x m)#l /\ avl (split x m)#r.
Proof.
intros m x; functional induction (split x m); simpl; auto.
rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
simpl; inversion_clear 1; auto.
rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
Qed.
End Elt.
#[global]
Hint Constructors avl : core.
Section Map.
Variable elt elt' : Type.
Variable f : elt -> elt'.
Lemma map_height : forall m, height (map f m) = height m.
Proof.
destruct m; simpl; auto.
Qed.
Lemma map_avl : forall m, avl m -> avl (map f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto; do 2 rewrite map_height; auto.
Qed.
End Map.
Section Mapi.
Variable elt elt' : Type.
Variable f : key -> elt -> elt'.
Lemma mapi_height : forall m, height (mapi f m) = height m.
Proof.
destruct m; simpl; auto.
Qed.
Lemma mapi_avl : forall m, avl m -> avl (mapi f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto; do 2 rewrite mapi_height; auto.
Qed.
End Mapi.
Section Map_option.
Variable elt elt' : Type.
Variable f : key -> elt -> option elt'.
Lemma map_option_avl : forall m, avl m -> avl (map_option f m).
Proof.
induction m; simpl; auto; intros.
inv avl; destruct (f k e); auto using join_avl, concat_avl.
Qed.
End Map_option.
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Hypothesis mapl_avl : forall m, avl m -> avl (mapl m).
Hypothesis mapr_avl : forall m', avl m' -> avl (mapr m').
Notation map2_opt := (map2_opt f mapl mapr).
Lemma map2_opt_avl : forall m1 m2, avl m1 -> avl m2 ->
avl (map2_opt m1 m2).
Proof.
intros m1 m2; functional induction (map2_opt m1 m2); auto;
factornode _x0 _x1 _x2 _x3 _x4 as r2; intros;
destruct (split_avl x1 H0); rewrite e1 in *; simpl in *; inv avl;
auto using join_avl, concat_avl.
Qed.
End Map2_opt.
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Lemma map2_avl : forall m1 m2, avl m1 -> avl m2 -> avl (map2 f m1 m2).
Proof.
unfold map2; auto using map2_opt_avl, map_option_avl.
Qed.
End Map2.
End AvlProofs.
(** * Encapsulation
We can implement [S] with balanced binary search trees.
When compared to [FMapAVL], we maintain here two invariants
(bst and avl) instead of only bst, which is enough for fulfilling
the FMap interface.
*)
Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module E := X.
Module Import AvlProofs := AvlProofs I X.
Import Raw.
Import Raw.Proofs.
#[universes(template)]
Record bbst (elt:Type) :=
Bbst {this :> tree elt; is_bst : bst this; is_avl: avl this}.
Definition t := bbst.
Definition key := E.t.
Section Elt.
Variable elt elt' elt'': Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Bbst (empty_bst elt) (empty_avl elt).
Definition is_empty m : bool := is_empty (this m).
Definition add x e m : t elt :=
Bbst (add_bst x e (is_bst m)) (add_avl x e (is_avl m)).
Definition remove x m : t elt :=
Bbst (remove_bst x (is_bst m)) (remove_avl x (is_avl m)).
Definition mem x m : bool := mem x (this m).
Definition find x m : option elt := find x (this m).
Definition map f m : t elt' :=
Bbst (map_bst f (is_bst m)) (map_avl f (is_avl m)).
Definition mapi (f:key->elt->elt') m : t elt' :=
Bbst (mapi_bst f (is_bst m)) (mapi_avl f (is_avl m)).
Definition map2 f m (m':t elt') : t elt'' :=
Bbst (map2_bst f (is_bst m) (is_bst m')) (map2_avl f (is_avl m) (is_avl m')).
Definition elements m : list (key*elt) := elements (this m).
Definition cardinal m := cardinal (this m).
Definition fold (A:Type) (f:key->elt->A->A) m i := fold (A:=A) f (this m) i.
Definition equal cmp m m' : bool := equal cmp (this m) (this m').
Definition MapsTo x e m : Prop := MapsTo x e (this m).
Definition In x m : Prop := In0 x (this m).
Definition Empty m : Prop := Empty (this m).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros m; exact (@MapsTo_1 _ (this m)). Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
apply (is_bst m).
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
Qed.
Lemma empty_1 : Empty empty.
Proof. exact (@empty_1 elt). Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof. intros m; exact (@is_empty_1 _ (this m)). Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof. intros m; exact (@is_empty_2 _ (this m)). Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Proof. intros m x y e; exact (@add_1 elt _ x y e). Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof. intros m x y e e'; exact (@add_2 elt _ x y e e'). Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof. intros m x y e e'; exact (@add_3 elt _ x y e e'). Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof.
unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
apply (is_bst m).
Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof. intros m x y e; exact (@remove_2 elt _ x y e (is_bst m)). Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof. intros m x y e; exact (@remove_3 elt _ x y e (is_bst m)). Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof. intros m x e; exact (@find_1 elt _ x e (is_bst m)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof. intros m; exact (@find_2 elt (this m)). Qed.
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@fold_1 elt (this m) (is_bst m)). Qed.
Lemma elements_1 : forall m x e,
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
Qed.
Lemma elements_2 : forall m x e,
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
Qed.
Lemma elements_3 : forall m, sort lt_key (elements m).
Proof. intros m; exact (@elements_sort elt (this m) (is_bst m)). Qed.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@elements_nodup elt (this m) (is_bst m)). Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Proof. intro m; exact (@elements_cardinal elt (this m)). Qed.
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp := Equiv (Cmp cmp).
Lemma Equivb_Equivb : forall cmp m m',
Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
Proof.
intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In; intuition.
generalize (H0 k); do 2 rewrite In_alt; intuition.
generalize (H0 k); do 2 rewrite In_alt; intuition.
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
Qed.
Lemma equal_1 : forall m m' cmp,
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
unfold equal; intros (m,b,a) (m',b',a') cmp; rewrite Equivb_Equivb;
intros; simpl in *; rewrite equal_Equivb; auto.
Qed.
Lemma equal_2 : forall m m' cmp,
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
unfold equal; intros (m,b,a) (m',b',a') cmp; rewrite Equivb_Equivb;
intros; simpl in *; rewrite <-equal_Equivb; auto.
Qed.
End Elt.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m x e f; exact (@map_1 elt elt' f (this m) x e). Qed.
Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
Proof.
intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
apply map_2; auto.
Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m x e f; exact (@mapi_1 elt elt' f (this m) x e). Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof.
intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
unfold find, map2, In; intros elt elt' elt'' m m' x f.
do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
apply (is_bst m).
apply (is_bst m').
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
unfold In, map2; intros elt elt' elt'' m m' x f.
do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
apply (is_bst m).
apply (is_bst m').
Qed.
End IntMake.
Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Sord with Module Data := D
with Module MapS.E := X.
Module Data := D.
Module Import MapS := IntMake(I)(X).
Import AvlProofs.
Import Raw.Proofs.
Module Import MD := OrderedTypeFacts(D).
Module LO := FMapList.Make_ord(X)(D).
Definition t := MapS.t D.t.
Definition cmp e e' :=
match D.compare e e' with EQ _ => true | _ => false end.
Definition elements (m:t) :=
LO.MapS.Build_slist (Raw.Proofs.elements_sort (is_bst m)).
(** * As comparison function, we propose here a non-structural
version faithful to the code of Ocaml's Map library, instead of
the structural version of FMapAVL *)
Fixpoint cardinal_e (e:Raw.enumeration D.t) :=
match e with
| Raw.End _ => 0%nat
| Raw.More _ _ r e => S (Raw.cardinal r + cardinal_e e)
end.
Lemma cons_cardinal_e : forall m e,
cardinal_e (Raw.cons m e) = (Raw.cardinal m + cardinal_e e)%nat.
Proof.
induction m; simpl; intros; auto.
rewrite IHm1; simpl; rewrite <- plus_n_Sm; auto with arith.
Qed.
Definition cardinal_e_2 ee :=
(cardinal_e (fst ee) + cardinal_e (snd ee))%nat.
Local Unset Keyed Unification.
Function compare_aux (ee:Raw.enumeration D.t * Raw.enumeration D.t)
{ measure cardinal_e_2 ee } : comparison :=
match ee with
| (Raw.End _, Raw.End _) => Eq
| (Raw.End _, Raw.More _ _ _ _) => Lt
| (Raw.More _ _ _ _, Raw.End _) => Gt
| (Raw.More x1 d1 r1 e1, Raw.More x2 d2 r2 e2) =>
match X.compare x1 x2 with
| EQ _ => match D.compare d1 d2 with
| EQ _ => compare_aux (Raw.cons r1 e1, Raw.cons r2 e2)
| LT _ => Lt
| GT _ => Gt
end
| LT _ => Lt
| GT _ => Gt
end
end.
Proof.
intros; unfold cardinal_e_2; simpl;
abstract (do 2 rewrite cons_cardinal_e; lia ).
Defined.
Definition Cmp c :=
match c with
| Eq => LO.eq_list
| Lt => LO.lt_list
| Gt => (fun l1 l2 => LO.lt_list l2 l1)
end.
Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2,
X.eq x1 x2 -> D.eq d1 d2 ->
Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
destruct c; simpl; intros; MX.elim_comp; auto with ordered_type.
Qed.
#[global]
Hint Resolve cons_Cmp : core.
Lemma compare_aux_Cmp : forall e,
Cmp (compare_aux e) (flatten_e (fst e)) (flatten_e (snd e)).
Proof.
intros e; functional induction (compare_aux e); simpl in *;
auto; intros; try clear e0; try clear e3; try MX.elim_comp; auto.
rewrite 2 cons_1 in IHc; auto.
Qed.
Lemma compare_Cmp : forall m1 m2,
Cmp (compare_aux (Raw.cons m1 (Raw.End _), Raw.cons m2 (Raw.End _)))
(Raw.elements m1) (Raw.elements m2).
Proof.
intros.
assert (H1:=cons_1 m1 (Raw.End _)).
assert (H2:=cons_1 m2 (Raw.End _)).
simpl in *; rewrite app_nil_r in *; rewrite <-H1,<-H2.
apply (@compare_aux_Cmp (Raw.cons m1 (Raw.End _),
Raw.cons m2 (Raw.End _))).
Qed.
Definition eq (m1 m2 : t) := LO.eq_list (Raw.elements m1) (Raw.elements m2).
Definition lt (m1 m2 : t) := LO.lt_list (Raw.elements m1) (Raw.elements m2).
Definition compare (s s':t) : Compare lt eq s s'.
Proof.
destruct s as (s,b,a), s' as (s',b',a').
generalize (compare_Cmp s s').
destruct compare_aux; intros; [apply EQ|apply LT|apply GT]; red; auto.
Defined.
(* Proofs about [eq] and [lt] *)
Definition selements (m1 : t) :=
LO.MapS.Build_slist (elements_sort (is_bst m1)).
Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
Proof.
unfold eq, seq, selements, elements, LO.eq; intuition.
Qed.
Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
Proof.
unfold lt, slt, selements, elements, LO.lt; intuition.
Qed.
Lemma eq_1 : forall (m m' : t), MapS.Equivb cmp m m' -> eq m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite Equivb_elements.
auto using LO.eq_1.
Qed.
Lemma eq_2 : forall m m', eq m m' -> MapS.Equivb cmp m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite Equivb_elements.
intros.
generalize (LO.eq_2 H).
auto.
Qed.
Lemma eq_refl : forall m : t, eq m m.
Proof.
intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
Qed.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
Qed.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
Proof.
intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
intros; eapply LO.eq_trans; eauto.
Qed.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Proof.
intros m1 m2 m3; rewrite 3 lt_slt; unfold slt;
intros; eapply LO.lt_trans; eauto.
Qed.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Proof.
intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq;
intros; apply LO.lt_not_eq; auto.
Qed.
End IntMake_ord.
(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
Module Make (X: OrderedType) <: S with Module E := X
:=IntMake(Z_as_Int)(X).
Module Make_ord (X: OrderedType)(D: OrderedType)
<: Sord with Module Data := D
with Module MapS.E := X
:=IntMake_ord(Z_as_Int)(X)(D).
|