1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite sets library : conversion to old [Finite_sets] *)
Require Import Ensembles Finite_sets.
Require Import FSetInterface FSetProperties OrderedTypeEx DecidableTypeEx.
(** * Going from [FSets] with usual Leibniz equality
to the good old [Ensembles] and [Finite_sets] theory. *)
Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
Module MP:= WProperties_fun U M.
Import M MP FM Ensembles Finite_sets.
Definition mkEns : M.t -> Ensemble M.elt :=
fun s x => M.In x s.
Notation " !! " := mkEns.
Lemma In_In : forall s x, M.In x s <-> In _ (!!s) x.
Proof.
unfold In; compute; auto with extcore.
Qed.
Lemma Subset_Included : forall s s', s[<=]s' <-> Included _ (!!s) (!!s').
Proof.
unfold Subset, Included, In, mkEns; intuition.
Qed.
Notation " a === b " := (Same_set M.elt a b) (at level 70, no associativity).
Lemma Equal_Same_set : forall s s', s[=]s' <-> !!s === !!s'.
Proof.
intros.
rewrite double_inclusion.
unfold Subset, Included, Same_set, In, mkEns; intuition.
Qed.
Lemma empty_Empty_Set : !!M.empty === Empty_set _.
Proof.
unfold Same_set, Included, mkEns, In.
split; intro; set_iff; inversion 1.
Qed.
Lemma Empty_Empty_set : forall s, Empty s -> !!s === Empty_set _.
Proof.
unfold Same_set, Included, mkEns, In.
split; intros.
destruct(H x H0).
inversion H0.
Qed.
Lemma singleton_Singleton : forall x, !!(M.singleton x) === Singleton _ x .
Proof.
unfold Same_set, Included, mkEns, In.
split; intro; set_iff; inversion 1; try constructor; auto.
Qed.
Lemma union_Union : forall s s', !!(union s s') === Union _ (!!s) (!!s').
Proof.
unfold Same_set, Included, mkEns, In.
split; intro; set_iff; inversion 1; [ constructor 1 | constructor 2 | | ]; auto.
Qed.
Lemma inter_Intersection : forall s s', !!(inter s s') === Intersection _ (!!s) (!!s').
Proof.
unfold Same_set, Included, mkEns, In.
split; intro; set_iff; inversion 1; try constructor; auto.
Qed.
Lemma add_Add : forall x s, !!(add x s) === Add _ (!!s) x.
Proof.
unfold Same_set, Included, mkEns, In.
split; intro; set_iff; inversion 1; auto with sets.
inversion H0.
constructor 2; constructor.
constructor 1; auto.
Qed.
Lemma Add_Add : forall x s s', MP.Add x s s' -> !!s' === Add _ (!!s) x.
Proof.
unfold Same_set, Included, mkEns, In.
split; intros.
red in H; rewrite H in H0.
destruct H0.
inversion H0.
constructor 2; constructor.
constructor 1; auto.
red in H; rewrite H.
inversion H0; auto.
inversion H1; auto.
Qed.
Lemma remove_Subtract : forall x s, !!(remove x s) === Subtract _ (!!s) x.
Proof.
unfold Same_set, Included, mkEns, In.
split; intro; set_iff; inversion 1; auto with sets.
split; auto.
contradict H1.
inversion H1; auto.
Qed.
Lemma mkEns_Finite : forall s, Finite _ (!!s).
Proof.
intro s; pattern s; apply set_induction; clear s; intros.
intros; replace (!!s) with (Empty_set elt); auto with sets.
symmetry; apply Extensionality_Ensembles.
apply Empty_Empty_set; auto.
replace (!!s') with (Add _ (!!s) x).
constructor 2; auto.
symmetry; apply Extensionality_Ensembles.
apply Add_Add; auto.
Qed.
Lemma mkEns_cardinal : forall s, cardinal _ (!!s) (M.cardinal s).
Proof.
intro s; pattern s; apply set_induction; clear s; intros.
intros; replace (!!s) with (Empty_set elt); auto with sets.
rewrite cardinal_1; auto with sets.
symmetry; apply Extensionality_Ensembles.
apply Empty_Empty_set; auto.
replace (!!s') with (Add _ (!!s) x).
rewrite (cardinal_2 H0 H1); auto with sets.
symmetry; apply Extensionality_Ensembles.
apply Add_Add; auto.
Qed.
(** we can even build a function from Finite Ensemble to FSet
... at least in Prop. *)
Lemma Ens_to_FSet : forall e : Ensemble M.elt, Finite _ e ->
exists s:M.t, !!s === e.
Proof.
induction 1.
exists M.empty.
apply empty_Empty_Set.
destruct IHFinite as (s,Hs).
exists (M.add x s).
apply Extensionality_Ensembles in Hs.
rewrite <- Hs.
apply add_Add.
Qed.
End WS_to_Finite_set.
Module S_to_Finite_set (U:UsualOrderedType)(M: Sfun U) :=
WS_to_Finite_set U M.
|