1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * DecimalFacts : some facts about Decimal numbers *)
Require Import Decimal Arith ZArith.
Variant digits := d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9.
Fixpoint to_list (u : uint) : list digits :=
match u with
| Nil => nil
| D0 u => cons d0 (to_list u)
| D1 u => cons d1 (to_list u)
| D2 u => cons d2 (to_list u)
| D3 u => cons d3 (to_list u)
| D4 u => cons d4 (to_list u)
| D5 u => cons d5 (to_list u)
| D6 u => cons d6 (to_list u)
| D7 u => cons d7 (to_list u)
| D8 u => cons d8 (to_list u)
| D9 u => cons d9 (to_list u)
end.
Fixpoint of_list (l : list digits) : uint :=
match l with
| nil => Nil
| cons d0 l => D0 (of_list l)
| cons d1 l => D1 (of_list l)
| cons d2 l => D2 (of_list l)
| cons d3 l => D3 (of_list l)
| cons d4 l => D4 (of_list l)
| cons d5 l => D5 (of_list l)
| cons d6 l => D6 (of_list l)
| cons d7 l => D7 (of_list l)
| cons d8 l => D8 (of_list l)
| cons d9 l => D9 (of_list l)
end.
Lemma of_list_to_list u : of_list (to_list u) = u.
Proof. now induction u; [|simpl; rewrite IHu..]. Qed.
Lemma to_list_of_list l : to_list (of_list l) = l.
Proof. now induction l as [|h t IHl]; [|case h; simpl; rewrite IHl]. Qed.
Lemma to_list_inj u u' : to_list u = to_list u' -> u = u'.
Proof.
now intro H; rewrite <-(of_list_to_list u), <-(of_list_to_list u'), H.
Qed.
Lemma of_list_inj u u' : of_list u = of_list u' -> u = u'.
Proof.
now intro H; rewrite <-(to_list_of_list u), <-(to_list_of_list u'), H.
Qed.
Lemma nb_digits_spec u : nb_digits u = length (to_list u).
Proof. now induction u; [|simpl; rewrite IHu..]. Qed.
Fixpoint lnzhead l :=
match l with
| nil => nil
| cons d l' =>
match d with
| d0 => lnzhead l'
| _ => l
end
end.
Lemma nzhead_spec u : to_list (nzhead u) = lnzhead (to_list u).
Proof. now induction u; [|simpl; rewrite IHu|..]. Qed.
Definition lzero := cons d0 nil.
Definition lunorm l :=
match lnzhead l with
| nil => lzero
| d => d
end.
Lemma unorm_spec u : to_list (unorm u) = lunorm (to_list u).
Proof. now unfold unorm, lunorm; rewrite <-nzhead_spec; case (nzhead u). Qed.
Lemma revapp_spec d d' :
to_list (revapp d d') = List.rev_append (to_list d) (to_list d').
Proof. now revert d'; induction d; intro d'; [|simpl; rewrite IHd..]. Qed.
Lemma rev_spec d : to_list (rev d) = List.rev (to_list d).
Proof. now unfold rev; rewrite revapp_spec, List.rev_alt; simpl. Qed.
Lemma app_spec d d' :
to_list (app d d') = Datatypes.app (to_list d) (to_list d').
Proof.
unfold app.
now rewrite revapp_spec, List.rev_append_rev, rev_spec, List.rev_involutive.
Qed.
Definition lnztail l :=
let fix aux l_rev :=
match l_rev with
| cons d0 l_rev => let (r, n) := aux l_rev in pair r (S n)
| _ => pair l_rev O
end in
let (r, n) := aux (List.rev l) in pair (List.rev r) n.
Lemma nztail_spec d :
let (r, n) := nztail d in
let (r', n') := lnztail (to_list d) in
to_list r = r' /\ n = n'.
Proof.
unfold nztail, lnztail.
set (f := fix aux d_rev := match d_rev with
| D0 d_rev => let (r, n) := aux d_rev in (r, S n)
| _ => (d_rev, 0) end).
set (f' := fix aux (l_rev : list digits) : list digits * nat :=
match l_rev with
| cons d0 l_rev => let (r, n) := aux l_rev in (r, S n)
| _ => (l_rev, 0)
end).
rewrite <-(of_list_to_list (rev d)), rev_spec.
induction (List.rev _) as [|h t IHl]; [now simpl|].
case h; simpl; [|now rewrite rev_spec; simpl; rewrite to_list_of_list..].
now revert IHl; case f; intros r n; case f'; intros r' n' [-> ->].
Qed.
Lemma del_head_spec_0 d : del_head 0 d = d.
Proof. now simpl. Qed.
Lemma del_head_spec_small n d :
n <= length (to_list d) -> to_list (del_head n d) = List.skipn n (to_list d).
Proof.
revert d; induction n as [|n IHn]; intro d; [now simpl|].
now case d; [|intros d' H; apply IHn, le_S_n..].
Qed.
Lemma del_head_spec_large n d : length (to_list d) < n -> del_head n d = zero.
Proof.
revert d; induction n; intro d; [now case d|].
now case d; [|intro d'; simpl; intro H; rewrite (IHn _ (proj2 (Nat.succ_lt_mono _ _) H))..].
Qed.
Lemma nb_digits_0 d : nb_digits d = 0 -> d = Nil.
Proof.
rewrite nb_digits_spec, <-(of_list_to_list d).
now case (to_list d) as [|h t]; [|rewrite to_list_of_list].
Qed.
Lemma nb_digits_n0 d : nb_digits d <> 0 -> d <> Nil.
Proof. now case d; [|intros u _..]. Qed.
Lemma nb_digits_iter_D0 n d :
nb_digits (Nat.iter n D0 d) = n + nb_digits d.
Proof. now induction n; simpl; [|rewrite IHn]. Qed.
Lemma length_lnzhead l : length (lnzhead l) <= length l.
Proof. now induction l as [|h t IHl]; [|case h; [apply le_S|..]]. Qed.
Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u.
Proof. now induction u; [|apply le_S|..]. Qed.
Lemma unorm_nzhead u : nzhead u <> Nil -> unorm u = nzhead u.
Proof. now unfold unorm; case nzhead. Qed.
Lemma nb_digits_unorm u : u <> Nil -> nb_digits (unorm u) <= nb_digits u.
Proof.
intro Hu; case (uint_eq_dec (nzhead u) Nil).
{ unfold unorm; intros ->; simpl.
now revert Hu; case u; [|intros u' _; apply le_n_S, Nat.le_0_l..]. }
intro H; rewrite (unorm_nzhead _ H); apply nb_digits_nzhead.
Qed.
Lemma nb_digits_rev d : nb_digits (rev d) = nb_digits d.
Proof. now rewrite !nb_digits_spec, rev_spec, List.rev_length. Qed.
Lemma nb_digits_del_head_sub d n :
n <= nb_digits d ->
nb_digits (del_head (nb_digits d - n) d) = n.
Proof.
rewrite !nb_digits_spec; intro Hn.
rewrite del_head_spec_small; [|now apply Nat.le_sub_l].
rewrite List.skipn_length, <-(Nat2Z.id (_ - _)).
rewrite Nat2Z.inj_sub; [|now apply Nat.le_sub_l].
rewrite (Nat2Z.inj_sub _ _ Hn).
rewrite Z.sub_sub_distr, Z.sub_diag; apply Nat2Z.id.
Qed.
Lemma unorm_D0 u : unorm (D0 u) = unorm u.
Proof. reflexivity. Qed.
Lemma app_nil_l d : app Nil d = d.
Proof. now simpl. Qed.
Lemma app_nil_r d : app d Nil = d.
Proof. now apply to_list_inj; rewrite app_spec, List.app_nil_r. Qed.
Lemma abs_app_int d d' : abs (app_int d d') = app (abs d) d'.
Proof. now case d. Qed.
Lemma abs_norm d : abs (norm d) = unorm (abs d).
Proof. now case d as [u|u]; [|simpl; unfold unorm; case nzhead]. Qed.
Lemma iter_D0_nzhead d :
Nat.iter (nb_digits d - nb_digits (nzhead d)) D0 (nzhead d) = d.
Proof.
induction d; [now simpl| |now rewrite Nat.sub_diag..].
simpl nzhead; simpl nb_digits.
rewrite (Nat.sub_succ_l _ _ (nb_digits_nzhead _)).
now rewrite <-IHd at 4.
Qed.
Lemma iter_D0_unorm d :
d <> Nil ->
Nat.iter (nb_digits d - nb_digits (unorm d)) D0 (unorm d) = d.
Proof.
case (uint_eq_dec (nzhead d) Nil); intro Hn.
{ unfold unorm; rewrite Hn; simpl; intro H.
revert H Hn; induction d; [now simpl|intros _|now intros _..].
case (uint_eq_dec d Nil); simpl; intros H Hn; [now rewrite H|].
rewrite Nat.sub_0_r, <- (Nat.sub_add 1 (nb_digits d)), Nat.add_comm.
{ now simpl; rewrite IHd. }
revert H; case d; [now simpl|intros u _; apply le_n_S, Nat.le_0_l..]. }
intros _; rewrite (unorm_nzhead _ Hn); apply iter_D0_nzhead.
Qed.
Lemma nzhead_app_l d d' :
nb_digits d' < nb_digits (nzhead (app d d')) ->
nzhead (app d d') = app (nzhead d) d'.
Proof.
intro Hl; apply to_list_inj; revert Hl.
rewrite !nb_digits_spec, app_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl].
{ now simpl; intro H; exfalso; revert H; apply Nat.le_ngt, length_lnzhead. }
rewrite <-List.app_comm_cons.
now case h; [simpl; intro Hl; apply IHl|..].
Qed.
Lemma nzhead_app_r d d' :
nb_digits (nzhead (app d d')) <= nb_digits d' ->
nzhead (app d d') = nzhead d'.
Proof.
intro Hl; apply to_list_inj; revert Hl.
rewrite !nb_digits_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
rewrite <-List.app_comm_cons.
now case h; [| simpl; rewrite List.app_length; intro Hl; exfalso; revert Hl;
apply Nat.le_ngt, Nat.le_add_l..].
Qed.
Lemma nzhead_app_nil_r d d' : nzhead (app d d') = Nil -> nzhead d' = Nil.
Proof.
now intro H; generalize H; rewrite nzhead_app_r; [|rewrite H; apply Nat.le_0_l].
Qed.
Lemma nzhead_app_nil d d' :
nb_digits (nzhead (app d d')) <= nb_digits d' -> nzhead d = Nil.
Proof.
intro H; apply to_list_inj; revert H.
rewrite !nb_digits_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
now case h; [now simpl|..];
simpl;intro H; exfalso; revert H; apply Nat.le_ngt;
rewrite List.app_length; apply Nat.le_add_l.
Qed.
Lemma nzhead_app_nil_l d d' : nzhead (app d d') = Nil -> nzhead d = Nil.
Proof.
intro H; apply to_list_inj; generalize (f_equal to_list H); clear H.
rewrite !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
now rewrite <-List.app_comm_cons; case h.
Qed.
Lemma unorm_app_zero d d' :
nb_digits (unorm (app d d')) <= nb_digits d' -> unorm d = zero.
Proof.
unfold unorm.
case (uint_eq_dec (nzhead (app d d')) Nil).
{ now intro Hn; rewrite Hn, (nzhead_app_nil_l _ _ Hn). }
intro H; fold (unorm (app d d')); rewrite (unorm_nzhead _ H); intro H'.
case (uint_eq_dec (nzhead d) Nil); [now intros->|].
intro H''; fold (unorm d); rewrite (unorm_nzhead _ H'').
exfalso; apply H''; revert H'; apply nzhead_app_nil.
Qed.
Lemma app_int_nil_r d : app_int d Nil = d.
Proof.
now case d; intro d'; simpl;
rewrite <-(of_list_to_list (app _ _)), app_spec;
rewrite List.app_nil_r, of_list_to_list.
Qed.
Lemma unorm_app_l d d' :
nb_digits d' < nb_digits (unorm (app d d')) ->
unorm (app d d') = app (unorm d) d'.
Proof.
case (uint_eq_dec d' Nil); [now intros->; rewrite !app_nil_r|intro Hd'].
case (uint_eq_dec (nzhead (app d d')) Nil).
{ unfold unorm; intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt.
now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..]. }
intro Ha; rewrite (unorm_nzhead _ Ha).
intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn).
rewrite !nb_digits_spec, app_spec, List.app_length.
case (uint_eq_dec (nzhead d) Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. }
now intro H; rewrite (unorm_nzhead _ H).
Qed.
Lemma unorm_app_r d d' :
nb_digits (unorm (app d d')) <= nb_digits d' ->
unorm (app d d') = unorm d'.
Proof.
case (uint_eq_dec (nzhead (app d d')) Nil).
{ now unfold unorm; intro H; rewrite H, (nzhead_app_nil_r _ _ H). }
intro Ha; rewrite (unorm_nzhead _ Ha).
case (uint_eq_dec (nzhead d') Nil).
{ now intros H H'; exfalso; apply Ha; rewrite nzhead_app_r. }
intro Hd'; rewrite (unorm_nzhead _ Hd'); apply nzhead_app_r.
Qed.
Lemma norm_app_int d d' :
nb_digits d' < nb_digits (unorm (app (abs d) d')) ->
norm (app_int d d') = app_int (norm d) d'.
Proof.
case (uint_eq_dec d' Nil); [now intros->; rewrite !app_int_nil_r|intro Hd'].
case d as [d|d]; [now simpl; intro H; apply f_equal, unorm_app_l|].
simpl; unfold unorm.
case (uint_eq_dec (nzhead (app d d')) Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt.
now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Nat.le_0_l..]. }
set (m := match nzhead _ with Nil => _ | _ => _ end).
intro Ha.
replace m with (nzhead (app d d')).
2:{ now unfold m; revert Ha; case nzhead. }
intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn).
case (uint_eq_dec (app (nzhead d) d') Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt, Nat.le_0_l. }
clear m; set (m := match app _ _ with Nil => _ | _ => _ end).
intro Ha'.
replace m with (Neg (app (nzhead d) d')); [|now unfold m; revert Ha'; case app].
case (uint_eq_dec (nzhead d) Nil).
{ intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. }
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
intro Hd.
now replace m with (Neg (nzhead d)); [|unfold m; revert Hd; case nzhead].
Qed.
Lemma del_head_nb_digits d : del_head (nb_digits d) d = Nil.
Proof.
apply to_list_inj.
rewrite nb_digits_spec, del_head_spec_small; [|now simpl].
now rewrite List.skipn_all.
Qed.
Lemma del_tail_nb_digits d : del_tail (nb_digits d) d = Nil.
Proof. now unfold del_tail; rewrite <-nb_digits_rev, del_head_nb_digits. Qed.
Lemma del_head_app n d d' :
n <= nb_digits d -> del_head n (app d d') = app (del_head n d) d'.
Proof.
rewrite nb_digits_spec; intro Hn.
apply to_list_inj.
rewrite del_head_spec_small.
2:{ now rewrite app_spec, List.app_length, <- Nat.le_add_r. }
rewrite !app_spec, (del_head_spec_small _ _ Hn).
rewrite List.skipn_app.
now rewrite (proj2 (Nat.sub_0_le _ _) Hn).
Qed.
Lemma del_tail_app n d d' :
n <= nb_digits d' -> del_tail n (app d d') = app d (del_tail n d').
Proof.
rewrite nb_digits_spec; intro Hn.
unfold del_tail.
rewrite <-(of_list_to_list (rev (app d d'))), rev_spec, app_spec.
rewrite List.rev_app_distr, <-!rev_spec, <-app_spec, of_list_to_list.
rewrite del_head_app; [|now rewrite nb_digits_spec, rev_spec, List.rev_length].
apply to_list_inj.
rewrite rev_spec, !app_spec, !rev_spec.
now rewrite List.rev_app_distr, List.rev_involutive.
Qed.
Lemma del_tail_app_int n d d' :
n <= nb_digits d' -> del_tail_int n (app_int d d') = app_int d (del_tail n d').
Proof. now case d as [d|d]; simpl; intro H; rewrite del_tail_app. Qed.
Lemma app_del_tail_head n (d:uint) :
n <= nb_digits d -> app (del_tail n d) (del_head (nb_digits d - n) d) = d.
Proof.
rewrite nb_digits_spec; intro Hn; unfold del_tail.
rewrite <-(of_list_to_list (app _ _)), app_spec, rev_spec.
rewrite del_head_spec_small; [|now rewrite rev_spec, List.rev_length].
rewrite del_head_spec_small; [|now apply Nat.le_sub_l].
rewrite rev_spec.
set (n' := _ - n).
assert (Hn' : n = length (to_list d) - n').
{ now rewrite <- (Nat.add_sub (length (to_list d)) n), Nat.add_comm,
<- 2 Nat.add_sub_assoc, Nat.sub_diag; trivial. }
now rewrite Hn', <-List.firstn_skipn_rev, List.firstn_skipn, of_list_to_list.
Qed.
Lemma app_int_del_tail_head n (d:int) :
n <= nb_digits (abs d) ->
app_int (del_tail_int n d) (del_head (nb_digits (abs d) - n) (abs d)) = d.
Proof. now case d; clear d; simpl; intros u Hu; rewrite app_del_tail_head. Qed.
Lemma del_head_app_int_exact i f :
nb_digits f < nb_digits (unorm (app (abs i) f)) ->
del_head (nb_digits (unorm (app (abs i) f)) - nb_digits f) (unorm (app (abs i) f)) = f.
Proof.
simpl; intro Hnb; generalize Hnb; rewrite (unorm_app_l _ _ Hnb); clear Hnb.
replace (_ - _) with (nb_digits (unorm (abs i))).
- now rewrite del_head_app; [rewrite del_head_nb_digits|].
- rewrite !nb_digits_spec, app_spec, List.app_length.
symmetry; apply Nat.add_sub.
Qed.
Lemma del_tail_app_int_exact i f :
nb_digits f < nb_digits (unorm (app (abs i) f)) ->
del_tail_int (nb_digits f) (norm (app_int i f)) = norm i.
Proof.
simpl; intro Hnb.
rewrite (norm_app_int _ _ Hnb).
rewrite del_tail_app_int; [|now simpl].
now rewrite del_tail_nb_digits, app_int_nil_r.
Qed.
(** Normalization on little-endian numbers *)
Fixpoint nztail d :=
match d with
| Nil => Nil
| D0 d => match nztail d with Nil => Nil | d' => D0 d' end
| D1 d => D1 (nztail d)
| D2 d => D2 (nztail d)
| D3 d => D3 (nztail d)
| D4 d => D4 (nztail d)
| D5 d => D5 (nztail d)
| D6 d => D6 (nztail d)
| D7 d => D7 (nztail d)
| D8 d => D8 (nztail d)
| D9 d => D9 (nztail d)
end.
Definition lnorm d :=
match nztail d with
| Nil => zero
| d => d
end.
Lemma nzhead_revapp_0 d d' : nztail d = Nil ->
nzhead (revapp d d') = nzhead d'.
Proof.
revert d'. induction d; intros d' [=]; simpl; trivial.
destruct (nztail d); now rewrite IHd.
Qed.
Lemma nzhead_revapp d d' : nztail d <> Nil ->
nzhead (revapp d d') = revapp (nztail d) d'.
Proof.
revert d'.
induction d; intros d' H; simpl in *;
try destruct (nztail d) eqn:E;
(now rewrite ?nzhead_revapp_0) || (now rewrite IHd).
Qed.
Lemma nzhead_rev d : nztail d <> Nil ->
nzhead (rev d) = rev (nztail d).
Proof.
apply nzhead_revapp.
Qed.
Lemma rev_rev d : rev (rev d) = d.
Proof. now apply to_list_inj; rewrite !rev_spec, List.rev_involutive. Qed.
Lemma rev_nztail_rev d :
rev (nztail (rev d)) = nzhead d.
Proof.
destruct (uint_eq_dec (nztail (rev d)) Nil) as [H|H].
- rewrite H. unfold rev; simpl.
rewrite <- (rev_rev d). symmetry.
now apply nzhead_revapp_0.
- now rewrite <- nzhead_rev, rev_rev.
Qed.
Lemma nzhead_D0 u : nzhead (D0 u) = nzhead u.
Proof. reflexivity. Qed.
Lemma nzhead_iter_D0 n u : nzhead (Nat.iter n D0 u) = nzhead u.
Proof. now induction n. Qed.
Lemma revapp_nil_inv d d' : revapp d d' = Nil -> d = Nil /\ d' = Nil.
Proof.
revert d'.
induction d; simpl; intros d' H; auto; now apply IHd in H.
Qed.
Lemma rev_nil_inv d : rev d = Nil -> d = Nil.
Proof.
apply revapp_nil_inv.
Qed.
Lemma rev_lnorm_rev d :
rev (lnorm (rev d)) = unorm d.
Proof.
unfold unorm, lnorm.
rewrite <- rev_nztail_rev.
destruct nztail; simpl; trivial;
destruct rev eqn:E; trivial; now apply rev_nil_inv in E.
Qed.
Lemma nzhead_nonzero d d' : nzhead d <> D0 d'.
Proof.
induction d; easy.
Qed.
Lemma unorm_0 d : unorm d = zero <-> nzhead d = Nil.
Proof.
unfold unorm. split.
- generalize (nzhead_nonzero d).
destruct nzhead; intros H [=]; trivial. now destruct (H u).
- now intros ->.
Qed.
Lemma unorm_nonnil d : unorm d <> Nil.
Proof.
unfold unorm. now destruct nzhead.
Qed.
Lemma unorm_iter_D0 n u : unorm (Nat.iter n D0 u) = unorm u.
Proof. now induction n. Qed.
Lemma del_head_nonnil n u :
n < nb_digits u -> del_head n u <> Nil.
Proof.
now revert n; induction u; intro n;
[|case n; [|intro n'; simpl; intro H; apply IHu, Nat.succ_lt_mono]..].
Qed.
Lemma del_tail_nonnil n u :
n < nb_digits u -> del_tail n u <> Nil.
Proof.
unfold del_tail.
rewrite <-nb_digits_rev.
generalize (rev u); clear u; intro u.
intros Hu H.
generalize (rev_nil_inv _ H); clear H.
now apply del_head_nonnil.
Qed.
Lemma nzhead_involutive d : nzhead (nzhead d) = nzhead d.
Proof.
now induction d.
Qed.
Lemma nztail_involutive d : nztail (nztail d) = nztail d.
Proof.
rewrite <-(rev_rev (nztail _)), <-(rev_rev (nztail d)), <-(rev_rev d).
now rewrite !rev_nztail_rev, nzhead_involutive.
Qed.
Lemma unorm_involutive d : unorm (unorm d) = unorm d.
Proof.
unfold unorm.
destruct (nzhead d) eqn:E; trivial.
destruct (nzhead_nonzero _ _ E).
Qed.
Lemma norm_involutive d : norm (norm d) = norm d.
Proof.
unfold norm.
destruct d.
- f_equal. apply unorm_involutive.
- destruct (nzhead d) eqn:E; auto.
destruct (nzhead_nonzero _ _ E).
Qed.
Lemma lnzhead_neq_d0_head l l' : ~(lnzhead l = cons d0 l').
Proof. now induction l as [|h t Il]; [|case h]. Qed.
Lemma lnzhead_head_nd0 h t : h <> d0 -> lnzhead (cons h t) = cons h t.
Proof. now case h. Qed.
Lemma nzhead_del_tail_nzhead_eq n u :
nzhead u = u ->
n < nb_digits u ->
nzhead (del_tail n u) = del_tail n u.
Proof.
rewrite nb_digits_spec, <-List.rev_length.
intros Hu Hn.
apply to_list_inj; unfold del_tail.
rewrite nzhead_spec, rev_spec.
rewrite del_head_spec_small; [|now rewrite rev_spec; apply Nat.lt_le_incl].
rewrite rev_spec.
rewrite List.skipn_rev, List.rev_involutive.
generalize (f_equal to_list Hu) Hn; rewrite nzhead_spec; intro Hu'.
case (to_list u) as [|h t].
{ simpl; intro H; exfalso; revert H; apply Nat.le_ngt, Nat.le_0_l. }
intro Hn'; generalize (Nat.sub_gt _ _ Hn'); rewrite List.rev_length.
case (_ - _); [now simpl|]; intros n' _.
rewrite List.firstn_cons, lnzhead_head_nd0; [now simpl|].
intro Hh; revert Hu'; rewrite Hh; apply lnzhead_neq_d0_head.
Qed.
Lemma nzhead_del_tail_nzhead n u :
n < nb_digits (nzhead u) ->
nzhead (del_tail n (nzhead u)) = del_tail n (nzhead u).
Proof. apply nzhead_del_tail_nzhead_eq, nzhead_involutive. Qed.
Lemma unorm_del_tail_unorm n u :
n < nb_digits (unorm u) ->
unorm (del_tail n (unorm u)) = del_tail n (unorm u).
Proof.
case (uint_eq_dec (nzhead u) Nil).
- unfold unorm; intros->; case n; [now simpl|]; intro n'.
now simpl; intro H; exfalso; generalize (proj2 (Nat.succ_lt_mono _ _) H).
- unfold unorm.
set (m := match nzhead u with Nil => zero | _ => _ end).
intros H.
replace m with (nzhead u).
+ intros H'.
rewrite (nzhead_del_tail_nzhead _ _ H').
now generalize (del_tail_nonnil _ _ H'); case del_tail.
+ now unfold m; revert H; case nzhead.
Qed.
Lemma norm_del_tail_int_norm n d :
n < nb_digits (match norm d with Pos d | Neg d => d end) ->
norm (del_tail_int n (norm d)) = del_tail_int n (norm d).
Proof.
case d; clear d; intros u; simpl.
- now intro H; simpl; rewrite unorm_del_tail_unorm.
- case (uint_eq_dec (nzhead u) Nil); intro Hu.
+ now rewrite Hu; case n; [|intros n' Hn'; generalize (proj2 (Nat.succ_lt_mono _ _) Hn')].
+ set (m := match nzhead u with Nil => Pos zero | _ => _ end).
replace m with (Neg (nzhead u)); [|now unfold m; revert Hu; case nzhead].
unfold del_tail_int.
clear m Hu.
simpl.
intro H; generalize (del_tail_nonnil _ _ H).
rewrite (nzhead_del_tail_nzhead _ _ H).
now case del_tail.
Qed.
Lemma nzhead_app_nzhead d d' :
nzhead (app (nzhead d) d') = nzhead (app d d').
Proof.
unfold app.
rewrite <-(rev_nztail_rev d), rev_rev.
generalize (rev d); clear d; intro d.
generalize (nzhead_revapp_0 d d').
generalize (nzhead_revapp d d').
generalize (nzhead_revapp_0 (nztail d) d').
generalize (nzhead_revapp (nztail d) d').
rewrite nztail_involutive.
now case nztail;
[intros _ H _ H'; rewrite (H eq_refl), (H' eq_refl)
|intros d'' H _ H' _; rewrite H; [rewrite H'|]..].
Qed.
Lemma unorm_app_unorm d d' :
unorm (app (unorm d) d') = unorm (app d d').
Proof.
unfold unorm.
rewrite <-(nzhead_app_nzhead d d').
now case (nzhead d).
Qed.
Lemma norm_app_int_norm d d' :
unorm d' = zero ->
norm (app_int (norm d) d') = norm (app_int d d').
Proof.
case d; clear d; intro d; simpl.
- now rewrite unorm_app_unorm.
- unfold app_int, app.
rewrite unorm_0; intro Hd'.
rewrite <-rev_nztail_rev.
generalize (nzhead_revapp (rev d) d').
generalize (nzhead_revapp_0 (rev d) d').
now case_eq (nztail (rev d));
[intros Hd'' H _; rewrite (H eq_refl); simpl;
unfold unorm; simpl; rewrite Hd'
|intros d'' Hd'' _ H; rewrite H; clear H; [|now simpl];
set (r := rev _);
set (m := match r with Nil => Pos zero | _ => _ end);
assert (H' : m = Neg r);
[now unfold m; case_eq r; unfold r;
[intro H''; generalize (rev_nil_inv _ H'')|..]
|rewrite H'; unfold r; clear m r H'];
unfold norm;
rewrite rev_rev, <-Hd'';
rewrite nzhead_revapp; rewrite nztail_involutive; [|rewrite Hd'']..].
Qed.
Lemma unorm_app_l_nil d d' : nzhead d = Nil -> unorm (app d d') = unorm d'.
Proof.
now unfold unorm; rewrite <-nzhead_app_nzhead; intros->; rewrite app_nil_l.
Qed.
|