1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * DecimalNat
Proofs that conversions between decimal numbers and [nat]
are bijections. *)
Require Import Decimal DecimalFacts Arith.
Module Unsigned.
(** A few helper functions used during proofs *)
Definition hd d :=
match d with
| Nil => 0
| D0 _ => 0
| D1 _ => 1
| D2 _ => 2
| D3 _ => 3
| D4 _ => 4
| D5 _ => 5
| D6 _ => 6
| D7 _ => 7
| D8 _ => 8
| D9 _ => 9
end.
Definition tl d :=
match d with
| Nil => d
| D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => d
end.
Fixpoint usize (d:uint) : nat :=
match d with
| Nil => 0
| D0 d => S (usize d)
| D1 d => S (usize d)
| D2 d => S (usize d)
| D3 d => S (usize d)
| D4 d => S (usize d)
| D5 d => S (usize d)
| D6 d => S (usize d)
| D7 d => S (usize d)
| D8 d => S (usize d)
| D9 d => S (usize d)
end.
(** A direct version of [to_little_uint], not tail-recursive *)
Fixpoint to_lu n :=
match n with
| 0 => Decimal.zero
| S n => Little.succ (to_lu n)
end.
(** A direct version of [of_little_uint] *)
Fixpoint of_lu (d:uint) : nat :=
match d with
| Nil => 0
| D0 d => 10 * of_lu d
| D1 d => 1 + 10 * of_lu d
| D2 d => 2 + 10 * of_lu d
| D3 d => 3 + 10 * of_lu d
| D4 d => 4 + 10 * of_lu d
| D5 d => 5 + 10 * of_lu d
| D6 d => 6 + 10 * of_lu d
| D7 d => 7 + 10 * of_lu d
| D8 d => 8 + 10 * of_lu d
| D9 d => 9 + 10 * of_lu d
end.
(** Properties of [to_lu] *)
Lemma to_lu_succ n : to_lu (S n) = Little.succ (to_lu n).
Proof.
reflexivity.
Qed.
Lemma to_little_uint_succ n d :
Nat.to_little_uint n (Little.succ d) =
Little.succ (Nat.to_little_uint n d).
Proof.
revert d; induction n; simpl; trivial.
Qed.
Lemma to_lu_equiv n :
to_lu n = Nat.to_little_uint n zero.
Proof.
induction n; simpl; trivial.
now rewrite IHn, <- to_little_uint_succ.
Qed.
Lemma to_uint_alt n :
Nat.to_uint n = rev (to_lu n).
Proof.
unfold Nat.to_uint. f_equal. symmetry. apply to_lu_equiv.
Qed.
(** Properties of [of_lu] *)
Lemma of_lu_eqn d :
of_lu d = hd d + 10 * of_lu (tl d).
Proof.
induction d; simpl; trivial.
Qed.
Ltac simpl_of_lu :=
match goal with
| |- context [ of_lu (?f ?x) ] =>
rewrite (of_lu_eqn (f x)); simpl hd; simpl tl
end.
Lemma of_lu_succ d :
of_lu (Little.succ d) = S (of_lu d).
Proof.
induction d; trivial.
simpl_of_lu. rewrite IHd. simpl_of_lu.
now rewrite Nat.mul_succ_r, <- (Nat.add_comm 10).
Qed.
Lemma of_to_lu n :
of_lu (to_lu n) = n.
Proof.
induction n; simpl; trivial. rewrite of_lu_succ. now f_equal.
Qed.
Lemma of_lu_revapp d d' :
of_lu (revapp d d') =
of_lu (rev d) + of_lu d' * 10^usize d.
Proof.
revert d'.
induction d; intro d'; simpl usize;
[ simpl; now rewrite Nat.mul_1_r | .. ];
unfold rev; simpl revapp; rewrite 2 IHd;
rewrite <- Nat.add_assoc; f_equal; simpl_of_lu; simpl of_lu;
rewrite Nat.pow_succ_r'; ring.
Qed.
Lemma of_uint_acc_spec n d :
Nat.of_uint_acc d n = of_lu (rev d) + n * 10^usize d.
Proof.
revert n. induction d; intros;
simpl Nat.of_uint_acc; rewrite ?Nat.tail_mul_spec, ?IHd;
simpl rev; simpl usize; rewrite ?Nat.pow_succ_r';
[ simpl; now rewrite Nat.mul_1_r | .. ];
unfold rev at 2; simpl revapp; rewrite of_lu_revapp;
simpl of_lu; ring.
Qed.
Lemma of_uint_alt d : Nat.of_uint d = of_lu (rev d).
Proof.
unfold Nat.of_uint. now rewrite of_uint_acc_spec.
Qed.
(** First main bijection result *)
Lemma of_to (n:nat) : Nat.of_uint (Nat.to_uint n) = n.
Proof.
rewrite to_uint_alt, of_uint_alt, rev_rev. apply of_to_lu.
Qed.
(** The other direction *)
Lemma to_lu_tenfold n : n<>0 ->
to_lu (10 * n) = D0 (to_lu n).
Proof.
induction n.
- simpl. now destruct 1.
- intros _.
destruct (Nat.eq_dec n 0) as [->|H]; simpl; trivial.
rewrite !Nat.add_succ_r.
simpl in *. rewrite (IHn H). now destruct (to_lu n).
Qed.
Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
Proof.
induction d; try simpl_of_lu; try easy.
rewrite Nat.add_0_l.
split; intros H.
- apply Nat.eq_mul_0_r in H; auto.
rewrite IHd in H. simpl. now rewrite H.
- simpl in H. destruct (nztail d); try discriminate.
now destruct IHd as [_ ->].
Qed.
Lemma to_of_lu_tenfold d :
to_lu (of_lu d) = lnorm d ->
to_lu (10 * of_lu d) = lnorm (D0 d).
Proof.
intro IH.
destruct (Nat.eq_dec (of_lu d) 0) as [H|H].
- rewrite H. simpl. rewrite of_lu_0 in H.
unfold lnorm. simpl. now rewrite H.
- rewrite (to_lu_tenfold _ H), IH.
rewrite of_lu_0 in H.
unfold lnorm. simpl. now destruct (nztail d).
Qed.
Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
Proof.
induction d; [ reflexivity | .. ];
simpl_of_lu;
rewrite ?Nat.add_succ_l, Nat.add_0_l, ?to_lu_succ, to_of_lu_tenfold
by assumption;
unfold lnorm; simpl; now destruct nztail.
Qed.
(** Second bijection result *)
Lemma to_of (d:uint) : Nat.to_uint (Nat.of_uint d) = unorm d.
Proof.
rewrite to_uint_alt, of_uint_alt, to_of_lu.
apply rev_lnorm_rev.
Qed.
(** Some consequences *)
Lemma to_uint_inj n n' : Nat.to_uint n = Nat.to_uint n' -> n = n'.
Proof.
intro EQ.
now rewrite <- (of_to n), <- (of_to n'), EQ.
Qed.
Lemma to_uint_surj d : exists n, Nat.to_uint n = unorm d.
Proof.
exists (Nat.of_uint d). apply to_of.
Qed.
Lemma of_uint_norm d : Nat.of_uint (unorm d) = Nat.of_uint d.
Proof.
unfold Nat.of_uint. now induction d.
Qed.
Lemma of_inj d d' :
Nat.of_uint d = Nat.of_uint d' -> unorm d = unorm d'.
Proof.
intros. rewrite <- !to_of. now f_equal.
Qed.
Lemma of_iff d d' : Nat.of_uint d = Nat.of_uint d' <-> unorm d = unorm d'.
Proof.
split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
apply of_uint_norm.
Qed.
End Unsigned.
(** Conversion from/to signed decimal numbers *)
Module Signed.
Lemma of_to (n:nat) : Nat.of_int (Nat.to_int n) = Some n.
Proof.
unfold Nat.to_int, Nat.of_int, norm. f_equal.
rewrite Unsigned.of_uint_norm. apply Unsigned.of_to.
Qed.
Lemma to_of (d:int)(n:nat) : Nat.of_int d = Some n -> Nat.to_int n = norm d.
Proof.
unfold Nat.of_int.
destruct (norm d) eqn:Hd; intros [= <-].
unfold Nat.to_int. rewrite Unsigned.to_of. f_equal.
revert Hd; destruct d; simpl.
- intros [= <-]. apply unorm_involutive.
- destruct (nzhead d); now intros [= <-].
Qed.
Lemma to_int_inj n n' : Nat.to_int n = Nat.to_int n' -> n = n'.
Proof.
intro E.
assert (E' : Some n = Some n').
{ now rewrite <- (of_to n), <- (of_to n'), E. }
now injection E'.
Qed.
Lemma to_int_pos_surj d : exists n, Nat.to_int n = norm (Pos d).
Proof.
exists (Nat.of_uint d). unfold Nat.to_int. now rewrite Unsigned.to_of.
Qed.
Lemma of_int_norm d : Nat.of_int (norm d) = Nat.of_int d.
Proof.
unfold Nat.of_int. now rewrite norm_involutive.
Qed.
Lemma of_inj_pos d d' :
Nat.of_int (Pos d) = Nat.of_int (Pos d') -> unorm d = unorm d'.
Proof.
unfold Nat.of_int. simpl. intros [= H]. apply Unsigned.of_inj.
now rewrite <- Unsigned.of_uint_norm, H, Unsigned.of_uint_norm.
Qed.
End Signed.
|