File: DecimalR.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (312 lines) | stat: -rw-r--r-- 14,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** * DecimalR

    Proofs that conversions between decimal numbers and [R]
    are bijections. *)

Require Import Decimal DecimalFacts DecimalPos DecimalZ DecimalQ Rdefinitions.

Lemma of_IQmake_to_decimal num den :
  match IQmake_to_decimal num den with
  | None => True
  | Some (DecimalExp _ _ _) => False
  | Some (Decimal i f) =>
    of_decimal (Decimal i f) = IRQ (QArith_base.Qmake num den)
  end.
Proof.
  unfold IQmake_to_decimal.
  case (Pos.eq_dec den 1); [now intros->|intro Hden].
  assert (Hf : match QArith_base.IQmake_to_decimal num den with
               | Some (Decimal i f) => f <> Nil
               | _ => True
               end).
  { unfold QArith_base.IQmake_to_decimal; simpl.
    generalize (Unsigned.nztail_to_uint den).
    case Decimal.nztail as [den' e_den'].
    case den'; [now simpl|now simpl| |now simpl..]; clear den'; intro den'.
    case den'; [ |now simpl..]; clear den'.
    case e_den' as [|e_den']; [now simpl; intros H _; apply Hden; injection H|].
    intros _.
    case Nat.ltb_spec; intro He_den'.
    - apply del_head_nonnil.
      revert He_den'; case nb_digits as [|n]; [now simpl|].
      now intro H; simpl; apply Nat.lt_succ_r, Nat.le_sub_l.
    - apply nb_digits_n0.
      now rewrite nb_digits_iter_D0, Nat.sub_add. }
  replace (match den with 1%positive => _ | _ => _ end)
    with (QArith_base.IQmake_to_decimal num den); [|now revert Hden; case den].
  generalize (of_IQmake_to_decimal num den).
  case QArith_base.IQmake_to_decimal as [d'|]; [|now simpl].
  case d' as [i f|]; [|now simpl].
  unfold of_decimal; simpl.
  injection 1 as H <-.
  generalize (f_equal QArith_base.IZ_to_Z H); clear H.
  rewrite !IZ_to_Z_IZ_of_Z; injection 1 as <-.
  now revert Hf; case f.
Qed.

Lemma of_to (q:IR) : forall d, to_decimal q = Some d -> of_decimal d = q.
Proof.
  intro d.
  case q as [z|q|r r'|r r']; simpl.
  - case z as [z p| |p|p].
    + now simpl.
    + now simpl; injection 1 as <-.
    + simpl; injection 1 as <-.
      now unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to.
    + simpl; injection 1 as <-.
      now unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to.
  - case q as [num den].
    generalize (of_IQmake_to_decimal num den).
    case IQmake_to_decimal as [d'|]; [|now simpl].
    case d' as [i f|]; [|now simpl].
    now intros H; injection 1 as <-.
  - case r as [z|q| |]; [|case q as[num den]|now simpl..];
      (case r' as [z'| | |]; [|now simpl..]);
      (case z' as [p e| | |]; [|now simpl..]).
    + case (Z.eq_dec p 10); [intros->|intro Hp].
      2:{ revert Hp; case p; [now simpl|intro d0..];
        (case d0; [intro d1..|]; [now simpl| |now simpl];
         case d1; [intro d2..|]; [|now simpl..];
         case d2; [intro d3..|]; [now simpl| |now simpl];
         now case d3). }
      case z as [| |p|p]; [now simpl|..]; injection 1 as <-.
      * now unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to.
      * unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to; simpl.
        now rewrite Unsigned.of_to.
      * unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to; simpl.
        now rewrite Unsigned.of_to.
    + case (Z.eq_dec p 10); [intros->|intro Hp].
      2:{ revert Hp; case p; [now simpl|intro d0..];
        (case d0; [intro d1..|]; [now simpl| |now simpl];
         case d1; [intro d2..|]; [|now simpl..];
         case d2; [intro d3..|]; [now simpl| |now simpl];
         now case d3). }
      generalize (of_IQmake_to_decimal num den).
      case IQmake_to_decimal as [d'|]; [|now simpl].
      case d' as [i f|]; [|now simpl].
      intros H; injection 1 as <-.
      unfold of_decimal; simpl.
      change (match f with Nil => _ | _ => _ end) with (of_decimal (Decimal i f)).
      rewrite H; clear H.
      now unfold Z.of_uint; rewrite Unsigned.of_to.
  - case r as [z|q| |]; [|case q as[num den]|now simpl..];
      (case r' as [z'| | |]; [|now simpl..]);
      (case z' as [p e| | |]; [|now simpl..]).
    + case (Z.eq_dec p 10); [intros->|intro Hp].
      2:{ revert Hp; case p; [now simpl|intro d0..];
        (case d0; [intro d1..|]; [now simpl| |now simpl];
         case d1; [intro d2..|]; [|now simpl..];
         case d2; [intro d3..|]; [now simpl| |now simpl];
         now case d3). }
      case z as [| |p|p]; [now simpl|..]; injection 1 as <-.
      * now unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to.
      * unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to; simpl.
        now rewrite Unsigned.of_to.
      * unfold of_decimal; simpl; unfold Z.of_uint; rewrite Unsigned.of_to; simpl.
        now rewrite Unsigned.of_to.
    + case (Z.eq_dec p 10); [intros->|intro Hp].
      2:{ revert Hp; case p; [now simpl|intro d0..];
        (case d0; [intro d1..|]; [now simpl| |now simpl];
         case d1; [intro d2..|]; [|now simpl..];
         case d2; [intro d3..|]; [now simpl| |now simpl];
         now case d3). }
      generalize (of_IQmake_to_decimal num den).
      case IQmake_to_decimal as [d'|]; [|now simpl].
      case d' as [i f|]; [|now simpl].
      intros H; injection 1 as <-.
      unfold of_decimal; simpl.
      change (match f with Nil => _ | _ => _ end) with (of_decimal (Decimal i f)).
      rewrite H; clear H.
      now unfold Z.of_uint; rewrite Unsigned.of_to.
Qed.

Lemma to_of (d:decimal) : to_decimal (of_decimal d) = Some (dnorm d).
Proof.
  case d as [i f|i f e].
  - unfold of_decimal; simpl.
    case (uint_eq_dec f Nil); intro Hf.
    + rewrite Hf; clear f Hf.
      unfold to_decimal; simpl.
      rewrite IZ_to_Z_IZ_of_Z, DecimalZ.to_of.
      case i as [i|i]; [now simpl|]; simpl.
      rewrite app_nil_r.
      case (uint_eq_dec (nzhead i) Nil); [now intros->|intro Hi].
      now rewrite (unorm_nzhead _ Hi); revert Hi; case nzhead.
    + set (r := IRQ _).
      set (m := match f with Nil => _ | _ => _ end).
      replace m with r; [unfold r|now unfold m; revert Hf; case f].
      unfold to_decimal; simpl.
      unfold IQmake_to_decimal; simpl.
      set (n := Nat.iter _ _ _).
      case (Pos.eq_dec n 1); intro Hn.
      exfalso; apply Hf.
      { now apply nb_digits_0; revert Hn; unfold n; case nb_digits. }
      clear m; set (m := match n with 1%positive | _ => _ end).
      replace m with (QArith_base.IQmake_to_decimal (Z.of_int (app_int i f)) n).
      2:{ now unfold m; revert Hn; case n. }
      unfold QArith_base.IQmake_to_decimal, n; simpl.
      rewrite nztail_to_uint_pow10.
      clear r; set (r := if _ <? _ then Some (Decimal _ _) else Some _).
      clear m; set (m := match nb_digits f with 0 => _ | _ => _ end).
      replace m with r; [unfold r|now unfold m; revert Hf; case f].
      rewrite DecimalZ.to_of, abs_norm, abs_app_int.
      case Nat.ltb_spec; intro Hnf.
      * rewrite (del_tail_app_int_exact _ _ Hnf).
        rewrite (del_head_app_int_exact _ _ Hnf).
        now rewrite (dnorm_i_exact _ _ Hnf).
      * rewrite (unorm_app_r _ _ Hnf).
        rewrite (iter_D0_unorm _ Hf).
        now rewrite dnorm_i_exact'.
  - unfold of_decimal; simpl.
    rewrite <-(DecimalZ.to_of e).
    case (Z.of_int e); clear e; [|intro e..]; simpl.
    + case (uint_eq_dec f Nil); intro Hf.
      * rewrite Hf; clear f Hf.
        unfold to_decimal; simpl.
        rewrite IZ_to_Z_IZ_of_Z, DecimalZ.to_of.
        case i as [i|i]; [now simpl|]; simpl.
        rewrite app_nil_r.
        case (uint_eq_dec (nzhead i) Nil); [now intros->|intro Hi].
        now rewrite (unorm_nzhead _ Hi); revert Hi; case nzhead.
      * set (r := IRQ _).
        set (m := match f with Nil => _ | _ => _ end).
        replace m with r; [unfold r|now unfold m; revert Hf; case f].
        unfold to_decimal; simpl.
        unfold IQmake_to_decimal; simpl.
        set (n := Nat.iter _ _ _).
        case (Pos.eq_dec n 1); intro Hn.
        exfalso; apply Hf.
        { now apply nb_digits_0; revert Hn; unfold n; case nb_digits. }
        clear m; set (m := match n with 1%positive | _ => _ end).
        replace m with (QArith_base.IQmake_to_decimal (Z.of_int (app_int i f)) n).
        2:{ now unfold m; revert Hn; case n. }
        unfold QArith_base.IQmake_to_decimal, n; simpl.
        rewrite nztail_to_uint_pow10.
        clear r; set (r := if _ <? _ then Some (Decimal _ _) else Some _).
        clear m; set (m := match nb_digits f with 0 => _ | _ => _ end).
        replace m with r; [unfold r|now unfold m; revert Hf; case f].
        rewrite DecimalZ.to_of, abs_norm, abs_app_int.
        case Nat.ltb_spec; intro Hnf.
        -- rewrite (del_tail_app_int_exact _ _ Hnf).
           rewrite (del_head_app_int_exact _ _ Hnf).
           now rewrite (dnorm_i_exact _ _ Hnf).
        -- rewrite (unorm_app_r _ _ Hnf).
           rewrite (iter_D0_unorm _ Hf).
           now rewrite dnorm_i_exact'.
    + set (i' := match i with Pos _ => _ | _ => _ end).
      set (m := match Pos.to_uint e with Nil => _ | _ => _ end).
      replace m with (DecimalExp i' f (Pos (Pos.to_uint e))).
      2:{ unfold m; generalize (Unsigned.to_uint_nonzero e).
          now case Pos.to_uint; [|intro u; case u|..]. }
      unfold i'; clear i' m.
      case (uint_eq_dec f Nil); intro Hf.
      * rewrite Hf; clear f Hf.
        unfold to_decimal; simpl.
        rewrite IZ_to_Z_IZ_of_Z, DecimalZ.to_of.
        case i as [i|i]; [now simpl|]; simpl.
        rewrite app_nil_r.
        case (uint_eq_dec (nzhead i) Nil); [now intros->|intro Hi].
        now rewrite (unorm_nzhead _ Hi); revert Hi; case nzhead.
      * set (r := IRQ _).
        set (m := match f with Nil => _ | _ => _ end).
        replace m with r; [unfold r|now unfold m; revert Hf; case f].
        unfold to_decimal; simpl.
        unfold IQmake_to_decimal; simpl.
        set (n := Nat.iter _ _ _).
        case (Pos.eq_dec n 1); intro Hn.
        exfalso; apply Hf.
        { now apply nb_digits_0; revert Hn; unfold n; case nb_digits. }
        clear m; set (m := match n with 1%positive | _ => _ end).
        replace m with (QArith_base.IQmake_to_decimal (Z.of_int (app_int i f)) n).
        2:{ now unfold m; revert Hn; case n. }
        unfold QArith_base.IQmake_to_decimal, n; simpl.
        rewrite nztail_to_uint_pow10.
        clear r; set (r := if _ <? _ then Some (Decimal _ _) else Some _).
        clear m; set (m := match nb_digits f with 0 => _ | _ => _ end).
        replace m with r; [unfold r|now unfold m; revert Hf; case f].
        rewrite DecimalZ.to_of, abs_norm, abs_app_int.
        case Nat.ltb_spec; intro Hnf.
        -- rewrite (del_tail_app_int_exact _ _ Hnf).
           rewrite (del_head_app_int_exact _ _ Hnf).
           now rewrite (dnorm_i_exact _ _ Hnf).
        -- rewrite (unorm_app_r _ _ Hnf).
           rewrite (iter_D0_unorm _ Hf).
           now rewrite dnorm_i_exact'.
    + case (uint_eq_dec f Nil); intro Hf.
      * rewrite Hf; clear f Hf.
        unfold to_decimal; simpl.
        rewrite IZ_to_Z_IZ_of_Z, DecimalZ.to_of.
        case i as [i|i]; [now simpl|]; simpl.
        rewrite app_nil_r.
        case (uint_eq_dec (nzhead i) Nil); [now intros->|intro Hi].
        now rewrite (unorm_nzhead _ Hi); revert Hi; case nzhead.
      * set (r := IRQ _).
        set (m := match f with Nil => _ | _ => _ end).
        replace m with r; [unfold r|now unfold m; revert Hf; case f].
        unfold to_decimal; simpl.
        unfold IQmake_to_decimal; simpl.
        set (n := Nat.iter _ _ _).
        case (Pos.eq_dec n 1); intro Hn.
        exfalso; apply Hf.
        { now apply nb_digits_0; revert Hn; unfold n; case nb_digits. }
        clear m; set (m := match n with 1%positive | _ => _ end).
        replace m with (QArith_base.IQmake_to_decimal (Z.of_int (app_int i f)) n).
        2:{ now unfold m; revert Hn; case n. }
        unfold QArith_base.IQmake_to_decimal, n; simpl.
        rewrite nztail_to_uint_pow10.
        clear r; set (r := if _ <? _ then Some (Decimal _ _) else Some _).
        clear m; set (m := match nb_digits f with 0 => _ | _ => _ end).
        replace m with r; [unfold r|now unfold m; revert Hf; case f].
        rewrite DecimalZ.to_of, abs_norm, abs_app_int.
        case Nat.ltb_spec; intro Hnf.
        -- rewrite (del_tail_app_int_exact _ _ Hnf).
           rewrite (del_head_app_int_exact _ _ Hnf).
           now rewrite (dnorm_i_exact _ _ Hnf).
        -- rewrite (unorm_app_r _ _ Hnf).
           rewrite (iter_D0_unorm _ Hf).
           now rewrite dnorm_i_exact'.
Qed.

(** Some consequences *)

Lemma to_decimal_inj q q' :
  to_decimal q <> None -> to_decimal q = to_decimal q' -> q = q'.
Proof.
  intros Hnone EQ.
  generalize (of_to q) (of_to q').
  rewrite <-EQ.
  revert Hnone; case to_decimal; [|now simpl].
  now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl).
Qed.

Lemma to_decimal_surj d : exists q, to_decimal q = Some (dnorm d).
Proof.
  exists (of_decimal d). apply to_of.
Qed.

Lemma of_decimal_dnorm d : of_decimal (dnorm d) = of_decimal d.
Proof. now apply to_decimal_inj; rewrite !to_of; [|rewrite dnorm_involutive]. Qed.

Lemma of_inj d d' : of_decimal d = of_decimal d' -> dnorm d = dnorm d'.
Proof.
  intro H.
  apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end)
                  (Some (dnorm d)) (Some (dnorm d'))).
  now rewrite <- !to_of, H.
Qed.

Lemma of_iff d d' : of_decimal d = of_decimal d' <-> dnorm d = dnorm d'.
Proof.
  split. apply of_inj. intros E. rewrite <- of_decimal_dnorm, E.
  apply of_decimal_dnorm.
Qed.