1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * HexadecimalQ
Proofs that conversions between hexadecimal numbers and [Q]
are bijections. *)
Require Import Decimal DecimalFacts DecimalPos DecimalN DecimalZ.
Require Import Hexadecimal HexadecimalFacts HexadecimalPos HexadecimalN HexadecimalZ QArith.
Lemma of_IQmake_to_hexadecimal num den :
match IQmake_to_hexadecimal num den with
| None => True
| Some (HexadecimalExp _ _ _) => False
| Some (Hexadecimal i f) => of_hexadecimal (Hexadecimal i f) = IQmake (IZ_of_Z num) den
end.
Proof.
unfold IQmake_to_hexadecimal.
generalize (Unsigned.nztail_to_hex_uint den).
case Hexadecimal.nztail; intros den' e_den'.
case den'; [now simpl|now simpl| |now simpl..]; clear den'; intro den'.
case den'; [ |now simpl..]; clear den'.
case e_den' as [|e_den']; simpl; injection 1 as ->.
{ now unfold of_hexadecimal; simpl; rewrite app_int_nil_r, HexadecimalZ.of_to. }
replace (16 ^ _)%positive with (Nat.iter (S e_den') (Pos.mul 16) 1%positive).
2:{ induction e_den' as [|n IHn]; [now simpl| ].
now rewrite SuccNat2Pos.inj_succ, Pos.pow_succ_r, <-IHn. }
case Nat.ltb_spec; intro He_den'.
- unfold of_hexadecimal; simpl.
rewrite app_int_del_tail_head; [|now apply Nat.lt_le_incl].
rewrite HexadecimalZ.of_to.
now rewrite nb_digits_del_head_sub; [|now apply Nat.lt_le_incl].
- unfold of_hexadecimal; simpl.
rewrite nb_digits_iter_D0.
apply f_equal2.
+ apply f_equal, HexadecimalZ.to_int_inj.
rewrite HexadecimalZ.to_of.
rewrite <-(HexadecimalZ.of_to num), HexadecimalZ.to_of.
case (Z.to_hex_int num); clear He_den' num; intro num; simpl.
* unfold app; simpl.
now rewrite unorm_D0, unorm_iter_D0, unorm_involutive.
* case (uint_eq_dec (nzhead num) Nil); [|intro Hn].
{ intros->; simpl; unfold app; simpl.
now rewrite unorm_D0, unorm_iter_D0. }
replace (match nzhead num with Nil => _ | _ => _ end)
with (Neg (nzhead num)); [|now revert Hn; case nzhead].
simpl.
rewrite nzhead_iter_D0, nzhead_involutive.
now revert Hn; case nzhead.
+ revert He_den'; case nb_digits as [|n]; [now simpl; rewrite Nat.add_0_r|].
intro Hn.
rewrite Nat.add_succ_r, Nat.sub_add; [|apply le_S_n]; auto.
Qed.
Lemma IZ_of_Z_IZ_to_Z z z' : IZ_to_Z z = Some z' -> IZ_of_Z z' = z.
Proof. now case z as [| |p|p]; [| injection 1 as <- ..]. Qed.
Lemma of_IQmake_to_hexadecimal' num den :
match IQmake_to_hexadecimal' num den with
| None => True
| Some (HexadecimalExp _ _ _) => False
| Some (Hexadecimal i f) => of_hexadecimal (Hexadecimal i f) = IQmake num den
end.
Proof.
unfold IQmake_to_hexadecimal'.
case_eq (IZ_to_Z num); [intros num' Hnum'|now simpl].
generalize (of_IQmake_to_hexadecimal num' den).
case IQmake_to_hexadecimal as [d|]; [|now simpl].
case d as [i f|]; [|now simpl].
now rewrite (IZ_of_Z_IZ_to_Z _ _ Hnum').
Qed.
Lemma of_to (q:IQ) : forall d, to_hexadecimal q = Some d -> of_hexadecimal d = q.
Proof.
intro d.
case q as [num den|q q'|q q']; simpl.
- generalize (of_IQmake_to_hexadecimal' num den).
case IQmake_to_hexadecimal' as [d'|]; [|now simpl].
case d' as [i f|]; [|now simpl].
now intros H; injection 1 as <-.
- case q as [num den| |]; [|now simpl..].
case q' as [num' den'| |]; [|now simpl..].
case num' as [z p| | |]; [|now simpl..].
case (Z.eq_dec z 2); [intros->|].
2:{ case z; [now simpl| |now simpl]; intro pz'.
case pz'; [intros d0..| ]; [now simpl| |now simpl].
now case d0. }
case (Pos.eq_dec den' 1%positive); [intros->|now case den'].
generalize (of_IQmake_to_hexadecimal' num den).
case IQmake_to_hexadecimal' as [d'|]; [|now simpl].
case d' as [i f|]; [|now simpl].
intros <-; clear num den.
injection 1 as <-.
unfold of_hexadecimal; simpl.
now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl.
- case q as [num den| |]; [|now simpl..].
case q' as [num' den'| |]; [|now simpl..].
case num' as [z p| | |]; [|now simpl..].
case (Z.eq_dec z 2); [intros->|].
2:{ case z; [now simpl| |now simpl]; intro pz'.
case pz'; [intros d0..| ]; [now simpl| |now simpl].
now case d0. }
case (Pos.eq_dec den' 1%positive); [intros->|now case den'].
generalize (of_IQmake_to_hexadecimal' num den).
case IQmake_to_hexadecimal' as [d'|]; [|now simpl].
case d' as [i f|]; [|now simpl].
intros <-; clear num den.
injection 1 as <-.
unfold of_hexadecimal; simpl.
now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl.
Qed.
Definition dnorm (d:hexadecimal) : hexadecimal :=
let norm_i i f :=
match i with
| Pos i => Pos (unorm i)
| Neg i => match nzhead (app i f) with Nil => Pos zero | _ => Neg (unorm i) end
end in
match d with
| Hexadecimal i f => Hexadecimal (norm_i i f) f
| HexadecimalExp i f e =>
match Decimal.norm e with
| Decimal.Pos Decimal.zero => Hexadecimal (norm_i i f) f
| e => HexadecimalExp (norm_i i f) f e
end
end.
Lemma dnorm_spec_i d :
let (i, f) :=
match d with Hexadecimal i f => (i, f) | HexadecimalExp i f _ => (i, f) end in
let i' := match dnorm d with Hexadecimal i _ => i | HexadecimalExp i _ _ => i end in
match i with
| Pos i => i' = Pos (unorm i)
| Neg i =>
(i' = Neg (unorm i) /\ (nzhead i <> Nil \/ nzhead f <> Nil))
\/ (i' = Pos zero /\ (nzhead i = Nil /\ nzhead f = Nil))
end.
Proof.
case d as [i f|i f e]; case i as [i|i].
- now simpl.
- simpl; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha.
+ rewrite Ha; right; split; [now simpl|split].
* now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha).
* now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha).
+ left; split; [now revert Ha; case nzhead|].
case (uint_eq_dec (nzhead i) Nil).
* intro Hi; right; intro Hf; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
* now intro H; left.
- simpl; case (Decimal.norm e); clear e; intro e; [|now simpl].
now case e; clear e; [|intro e..]; [|case e|..].
- simpl.
set (m := match nzhead _ with Nil => _ | _ => _ end).
set (m' := match _ with Hexadecimal _ _ => _ | _ => _ end).
replace m' with m.
2:{ unfold m'; case (Decimal.norm e); clear m' e; intro e; [|now simpl].
now case e; clear e; [|intro e..]; [|case e|..]. }
unfold m; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha.
+ rewrite Ha; right; split; [now simpl|split].
* now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha).
* now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha).
+ left; split; [now revert Ha; case nzhead|].
case (uint_eq_dec (nzhead i) Nil).
* intro Hi; right; intro Hf; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
* now intro H; left.
Qed.
Lemma dnorm_spec_f d :
let f := match d with Hexadecimal _ f => f | HexadecimalExp _ f _ => f end in
let f' := match dnorm d with Hexadecimal _ f => f | HexadecimalExp _ f _ => f end in
f' = f.
Proof.
case d as [i f|i f e]; [now simpl|].
simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); [now intros->|intro He].
set (i' := match i with Pos _ => _ | _ => _ end).
set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp i' f (Decimal.norm e)); [now simpl|].
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
Qed.
Lemma dnorm_spec_e d :
match d, dnorm d with
| Hexadecimal _ _, Hexadecimal _ _ => True
| HexadecimalExp _ _ e, Hexadecimal _ _ =>
Decimal.norm e = Decimal.Pos Decimal.zero
| HexadecimalExp _ _ e, HexadecimalExp _ _ e' =>
e' = Decimal.norm e /\ e' <> Decimal.Pos Decimal.zero
| Hexadecimal _ _, HexadecimalExp _ _ _ => False
end.
Proof.
case d as [i f|i f e]; [now simpl|].
simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); [now intros->|intro He].
set (i' := match i with Pos _ => _ | _ => _ end).
set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp i' f (Decimal.norm e)); [now simpl|].
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
Qed.
Lemma dnorm_involutive d : dnorm (dnorm d) = dnorm d.
Proof.
case d as [i f|i f e]; case i as [i|i].
- now simpl; rewrite unorm_involutive.
- simpl; case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha].
set (m := match nzhead _ with Nil =>_ | _ => _ end).
replace m with (Neg (unorm i)).
2:{ now unfold m; revert Ha; case nzhead. }
case (uint_eq_dec (nzhead i) Nil); intro Hi.
+ unfold unorm; rewrite Hi; simpl.
case (uint_eq_dec (nzhead f) Nil).
* intro Hf; exfalso; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
* now case nzhead.
+ rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead.
now revert Ha; case nzhead.
- simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); intro He.
+ now rewrite He; simpl; rewrite unorm_involutive.
+ set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp (Pos (unorm i)) f (Decimal.norm e)).
2:{ unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..]. }
simpl; rewrite DecimalFacts.norm_involutive, unorm_involutive.
revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
- simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); intro He.
+ rewrite He; simpl.
case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha].
set (m := match nzhead _ with Nil =>_ | _ => _ end).
replace m with (Neg (unorm i)).
2:{ now unfold m; revert Ha; case nzhead. }
case (uint_eq_dec (nzhead i) Nil); intro Hi.
* unfold unorm; rewrite Hi; simpl.
case (uint_eq_dec (nzhead f) Nil).
-- intro Hf; exfalso; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
-- now case nzhead.
* rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead.
now revert Ha; case nzhead.
+ set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
pose (i' := match nzhead (app i f) with Nil => Pos zero | _ => Neg (unorm i) end).
replace m with (HexadecimalExp i' f (Decimal.norm e)).
2:{ unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..]. }
simpl; rewrite DecimalFacts.norm_involutive.
set (i'' := match i' with Pos _ => _ | _ => _ end).
clear m; set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp i'' f (Decimal.norm e)).
2:{ unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..]. }
unfold i'', i'.
case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha].
fold i'; replace i' with (Neg (unorm i)).
2:{ now unfold i'; revert Ha; case nzhead. }
case (uint_eq_dec (nzhead i) Nil); intro Hi.
* unfold unorm; rewrite Hi; simpl.
case (uint_eq_dec (nzhead f) Nil).
-- intro Hf; exfalso; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
-- now case nzhead.
* rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead.
now revert Ha; case nzhead.
Qed.
Lemma IZ_to_Z_IZ_of_Z z : IZ_to_Z (IZ_of_Z z) = Some z.
Proof. now case z. Qed.
Lemma dnorm_i_exact i f :
(nb_digits f < nb_digits (unorm (app (abs i) f)))%nat ->
match i with
| Pos i => Pos (unorm i)
| Neg i =>
match nzhead (app i f) with
| Nil => Pos zero
| _ => Neg (unorm i)
end
end = norm i.
Proof.
case i as [ni|ni]; [now simpl|]; simpl.
case (uint_eq_dec (nzhead (app ni f)) Nil); intro Ha.
{ now rewrite Ha, (nzhead_app_nil_l _ _ Ha). }
rewrite (unorm_nzhead _ Ha).
set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (Neg (unorm ni)); [|now unfold m; revert Ha; case nzhead].
case (uint_eq_dec (nzhead ni) Nil); intro Hni.
{ rewrite <-nzhead_app_nzhead, Hni, app_nil_l.
intro H; exfalso; revert H; apply Nat.le_ngt, nb_digits_nzhead. }
clear m; set (m := match nzhead ni with Nil => _ | _ => _ end).
replace m with (Neg (nzhead ni)); [|now unfold m; revert Hni; case nzhead].
now rewrite (unorm_nzhead _ Hni).
Qed.
Lemma dnorm_i_exact' i f :
(nb_digits (unorm (app (abs i) f)) <= nb_digits f)%nat ->
match i with
| Pos i => Pos (unorm i)
| Neg i =>
match nzhead (app i f) with
| Nil => Pos zero
| _ => Neg (unorm i)
end
end =
match norm (app_int i f) with
| Pos _ => Pos zero
| Neg _ => Neg zero
end.
Proof.
case i as [ni|ni]; simpl.
{ now intro Hnb; rewrite (unorm_app_zero _ _ Hnb). }
unfold unorm.
case (uint_eq_dec (nzhead (app ni f)) Nil); intro Hn.
{ now rewrite Hn. }
set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (nzhead (app ni f)).
2:{ now unfold m; revert Hn; case nzhead. }
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (Neg (unorm ni)).
2:{ now unfold m, unorm; revert Hn; case nzhead. }
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (Neg (nzhead (app ni f))).
2:{ now unfold m; revert Hn; case nzhead. }
rewrite <-(unorm_nzhead _ Hn).
now intro H; rewrite (unorm_app_zero _ _ H).
Qed.
Lemma to_of (d:hexadecimal) : to_hexadecimal (of_hexadecimal d) = Some (dnorm d).
Proof.
case d as [i f|i f e].
- unfold of_hexadecimal; simpl; unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
+ rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
+ rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
* rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
* rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
- unfold of_hexadecimal; simpl.
rewrite <-DecimalZ.to_of.
case (Z.of_int e); clear e; [|intro e..]; simpl.
+ unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
* rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
* rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
-- rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
-- rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
+ unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
generalize (DecimalPos.Unsigned.to_uint_nonzero e); intro He.
set (dnorm_i := match i with Pos _ => _ | _ => _ end).
set (m := match Pos.to_uint e with Decimal.Nil => _ | _ => _ end).
replace m with (HexadecimalExp dnorm_i f (Decimal.Pos (Pos.to_uint e))).
2:{ now unfold m; revert He; case (Pos.to_uint e); [|intro u; case u|..]. }
clear m; unfold dnorm_i.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
* rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
* rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
-- rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
-- rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
+ unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
* rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
* rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
-- rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
-- rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
Qed.
(** Some consequences *)
Lemma to_hexadecimal_inj q q' :
to_hexadecimal q <> None -> to_hexadecimal q = to_hexadecimal q' -> q = q'.
Proof.
intros Hnone EQ.
generalize (of_to q) (of_to q').
rewrite <-EQ.
revert Hnone; case to_hexadecimal; [|now simpl].
now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl).
Qed.
Lemma to_hexadecimal_surj d : exists q, to_hexadecimal q = Some (dnorm d).
Proof.
exists (of_hexadecimal d). apply to_of.
Qed.
Lemma of_hexadecimal_dnorm d : of_hexadecimal (dnorm d) = of_hexadecimal d.
Proof. now apply to_hexadecimal_inj; rewrite !to_of; [|rewrite dnorm_involutive]. Qed.
Lemma of_inj d d' : of_hexadecimal d = of_hexadecimal d' -> dnorm d = dnorm d'.
Proof.
intro H.
apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end)
(Some (dnorm d)) (Some (dnorm d'))).
now rewrite <- !to_of, H.
Qed.
Lemma of_iff d d' : of_hexadecimal d = of_hexadecimal d' <-> dnorm d = dnorm d'.
Proof.
split. apply of_inj. intros E. rewrite <- of_hexadecimal_dnorm, E.
apply of_hexadecimal_dnorm.
Qed.
|