1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Hexadecimal Ascii String.
(** * Conversion between hexadecimal numbers and Coq strings *)
(** Pretty straightforward, which is precisely the point of the
[Hexadecimal.int] datatype. The only catch is [Hexadecimal.Nil] : we could
choose to convert it as [""] or as ["0"]. In the first case, it is
awkward to consider "" (or "-") as a number, while in the second case
we don't have a perfect bijection. Since the second variant is implemented
thanks to the first one, we provide both.
Hexadecimal digits are lower case ('a'..'f'). We ignore upper case
digits ('A'..'F') for the sake of simplicity. *)
Local Open Scope string_scope.
(** Parsing one char *)
Definition uint_of_char (a:ascii)(d:option uint) :=
match d with
| None => None
| Some d =>
match a with
| "0" => Some (D0 d)
| "1" => Some (D1 d)
| "2" => Some (D2 d)
| "3" => Some (D3 d)
| "4" => Some (D4 d)
| "5" => Some (D5 d)
| "6" => Some (D6 d)
| "7" => Some (D7 d)
| "8" => Some (D8 d)
| "9" => Some (D9 d)
| "a" => Some (Da d)
| "b" => Some (Db d)
| "c" => Some (Dc d)
| "d" => Some (Dd d)
| "e" => Some (De d)
| "f" => Some (Df d)
| _ => None
end
end%char.
Lemma uint_of_char_spec c d d' :
uint_of_char c (Some d) = Some d' ->
(c = "0" /\ d' = D0 d \/
c = "1" /\ d' = D1 d \/
c = "2" /\ d' = D2 d \/
c = "3" /\ d' = D3 d \/
c = "4" /\ d' = D4 d \/
c = "5" /\ d' = D5 d \/
c = "6" /\ d' = D6 d \/
c = "7" /\ d' = D7 d \/
c = "8" /\ d' = D8 d \/
c = "9" /\ d' = D9 d \/
c = "a" /\ d' = Da d \/
c = "b" /\ d' = Db d \/
c = "c" /\ d' = Dc d \/
c = "d" /\ d' = Dd d \/
c = "e" /\ d' = De d \/
c = "f" /\ d' = Df d)%char.
Proof.
destruct c as [[|] [|] [|] [|] [|] [|] [|] [|]];
intros [= <-]; intuition.
Qed.
(** Hexadecimal/String conversion where [Nil] is [""] *)
Module NilEmpty.
Fixpoint string_of_uint (d:uint) :=
match d with
| Nil => EmptyString
| D0 d => String "0" (string_of_uint d)
| D1 d => String "1" (string_of_uint d)
| D2 d => String "2" (string_of_uint d)
| D3 d => String "3" (string_of_uint d)
| D4 d => String "4" (string_of_uint d)
| D5 d => String "5" (string_of_uint d)
| D6 d => String "6" (string_of_uint d)
| D7 d => String "7" (string_of_uint d)
| D8 d => String "8" (string_of_uint d)
| D9 d => String "9" (string_of_uint d)
| Da d => String "a" (string_of_uint d)
| Db d => String "b" (string_of_uint d)
| Dc d => String "c" (string_of_uint d)
| Dd d => String "d" (string_of_uint d)
| De d => String "e" (string_of_uint d)
| Df d => String "f" (string_of_uint d)
end.
Fixpoint uint_of_string s :=
match s with
| EmptyString => Some Nil
| String a s => uint_of_char a (uint_of_string s)
end.
Definition string_of_int (d:int) :=
match d with
| Pos d => string_of_uint d
| Neg d => String "-" (string_of_uint d)
end.
Definition int_of_string s :=
match s with
| EmptyString => Some (Pos Nil)
| String a s' =>
if Ascii.eqb a "-" then option_map Neg (uint_of_string s')
else option_map Pos (uint_of_string s)
end.
(* NB: For the moment whitespace between - and digits are not accepted.
And in this variant [int_of_string "-" = Some (Neg Nil)].
Compute int_of_string "-123456890123456890123456890123456890".
Compute string_of_int (-123456890123456890123456890123456890).
*)
(** Corresponding proofs *)
Lemma usu d :
uint_of_string (string_of_uint d) = Some d.
Proof.
induction d; simpl; rewrite ?IHd; simpl; auto.
Qed.
Lemma sus s d :
uint_of_string s = Some d -> string_of_uint d = s.
Proof.
revert d.
induction s; simpl.
- now intros d [= <-].
- intros d.
destruct (uint_of_string s); [intros H | intros [=]].
apply uint_of_char_spec in H.
intuition subst; simpl; f_equal; auto.
Qed.
Lemma isi d : int_of_string (string_of_int d) = Some d.
Proof.
destruct d; simpl.
- unfold int_of_string.
destruct (string_of_uint d) eqn:Hd.
+ now destruct d.
+ case Ascii.eqb_spec.
* intros ->. now destruct d.
* rewrite <- Hd, usu; auto.
- rewrite usu; auto.
Qed.
Lemma sis s d :
int_of_string s = Some d -> string_of_int d = s.
Proof.
destruct s; [intros [= <-]| ]; simpl; trivial.
case Ascii.eqb_spec.
- intros ->. destruct (uint_of_string s) eqn:Hs; simpl; intros [= <-].
simpl; f_equal. now apply sus.
- destruct d; [ | now destruct uint_of_char].
simpl string_of_int.
intros. apply sus; simpl.
destruct uint_of_char; simpl in *; congruence.
Qed.
End NilEmpty.
(** Hexadecimal/String conversions where [Nil] is ["0"] *)
Module NilZero.
Definition string_of_uint (d:uint) :=
match d with
| Nil => "0"
| _ => NilEmpty.string_of_uint d
end.
Definition uint_of_string s :=
match s with
| EmptyString => None
| _ => NilEmpty.uint_of_string s
end.
Definition string_of_int (d:int) :=
match d with
| Pos d => string_of_uint d
| Neg d => String "-" (string_of_uint d)
end.
Definition int_of_string s :=
match s with
| EmptyString => None
| String a s' =>
if Ascii.eqb a "-" then option_map Neg (uint_of_string s')
else option_map Pos (uint_of_string s)
end.
(** Corresponding proofs *)
Lemma uint_of_string_nonnil s : uint_of_string s <> Some Nil.
Proof.
destruct s; simpl.
- easy.
- destruct (NilEmpty.uint_of_string s); [intros H | intros [=]].
apply uint_of_char_spec in H.
now intuition subst.
Qed.
Lemma sus s d :
uint_of_string s = Some d -> string_of_uint d = s.
Proof.
destruct s; [intros [=] | intros H].
apply NilEmpty.sus in H. now destruct d.
Qed.
Lemma usu d :
d<>Nil -> uint_of_string (string_of_uint d) = Some d.
Proof.
destruct d; (now destruct 1) || (intros _; apply NilEmpty.usu).
Qed.
Lemma usu_nil :
uint_of_string (string_of_uint Nil) = Some Hexadecimal.zero.
Proof.
reflexivity.
Qed.
Lemma usu_gen d :
uint_of_string (string_of_uint d) = Some d \/
uint_of_string (string_of_uint d) = Some Hexadecimal.zero.
Proof.
destruct d; (now right) || (left; now apply usu).
Qed.
Lemma isi d :
d<>Pos Nil -> d<>Neg Nil ->
int_of_string (string_of_int d) = Some d.
Proof.
destruct d; simpl.
- intros H _.
unfold int_of_string.
destruct (string_of_uint d) eqn:Hd.
+ now destruct d.
+ case Ascii.eqb_spec.
* intros ->. now destruct d.
* rewrite <- Hd, usu; auto. now intros ->.
- intros _ H.
rewrite usu; auto. now intros ->.
Qed.
Lemma isi_posnil :
int_of_string (string_of_int (Pos Nil)) = Some (Pos Hexadecimal.zero).
Proof.
reflexivity.
Qed.
(** Warning! (-0) won't parse (compatibility with the behavior of Z). *)
Lemma isi_negnil :
int_of_string (string_of_int (Neg Nil)) = Some (Neg (D0 Nil)).
Proof.
reflexivity.
Qed.
Lemma sis s d :
int_of_string s = Some d -> string_of_int d = s.
Proof.
destruct s; [intros [=]| ]; simpl.
case Ascii.eqb_spec.
- intros ->. destruct (uint_of_string s) eqn:Hs; simpl; intros [= <-].
simpl; f_equal. now apply sus.
- destruct d; [ | now destruct uint_of_char].
simpl string_of_int.
intros. apply sus; simpl.
destruct uint_of_char; simpl in *; congruence.
Qed.
End NilZero.
|