1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Euclidean Division *)
Require Import NZAxioms NZMulOrder.
(** The first signatures will be common to all divisions over NZ, N and Z *)
Module Type DivMod (Import A : Typ).
Parameters Inline div modulo : t -> t -> t.
End DivMod.
Module Type DivModNotation (A : Typ)(Import B : DivMod A).
Infix "/" := div.
Infix "mod" := modulo (at level 40, no associativity).
End DivModNotation.
Module Type DivMod' (A : Typ) := DivMod A <+ DivModNotation A.
Module Type NZDivSpec (Import A : NZOrdAxiomsSig')(Import B : DivMod' A).
#[global]
Declare Instance div_wd : Proper (eq==>eq==>eq) div.
#[global]
Declare Instance mod_wd : Proper (eq==>eq==>eq) modulo.
Axiom div_mod : forall a b, b ~= 0 -> a == b*(a/b) + (a mod b).
Axiom mod_bound_pos : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
End NZDivSpec.
(** The different divisions will only differ in the conditions
they impose on [modulo]. For NZ, we have only described the
behavior on positive numbers.
*)
Module Type NZDiv (A : NZOrdAxiomsSig) := DivMod A <+ NZDivSpec A.
Module Type NZDiv' (A : NZOrdAxiomsSig) := NZDiv A <+ DivModNotation A.
Module Type NZDivProp
(Import A : NZOrdAxiomsSig')
(Import B : NZDiv' A)
(Import C : NZMulOrderProp A).
(** Uniqueness theorems *)
Theorem div_mod_unique :
forall b q1 q2 r1 r2, 0<=r1<b -> 0<=r2<b ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b.
assert (U : forall q1 q2 r1 r2,
b*q1+r1 == b*q2+r2 -> 0<=r1<b -> 0<=r2 -> q1<q2 -> False).
- intros q1 q2 r1 r2 EQ LT Hr1 Hr2.
contradict EQ.
apply lt_neq.
apply lt_le_trans with (b*q1+b).
+ rewrite <- add_lt_mono_l. tauto.
+ apply le_trans with (b*q2).
* rewrite mul_comm, <- mul_succ_l, mul_comm.
apply mul_le_mono_nonneg_l; intuition; try order.
rewrite le_succ_l; auto.
* rewrite <- (add_0_r (b*q2)) at 1.
rewrite <- add_le_mono_l. tauto.
- intros q1 q2 r1 r2 Hr1 Hr2 EQ; destruct (lt_trichotomy q1 q2) as [LT|[EQ'|GT]].
+ elim (U q1 q2 r1 r2); intuition.
+ split; auto. rewrite EQ' in EQ. rewrite add_cancel_l in EQ; auto.
+ elim (U q2 q1 r2 r1); intuition.
Qed.
Theorem div_unique:
forall a b q r, 0<=a -> 0<=r<b ->
a == b*q + r -> q == a/b.
Proof.
intros a b q r Ha (Hb,Hr) EQ.
destruct (div_mod_unique b q (a/b) r (a mod b)); auto.
- apply mod_bound_pos; order.
- rewrite <- div_mod; order.
Qed.
Theorem mod_unique:
forall a b q r, 0<=a -> 0<=r<b ->
a == b*q + r -> r == a mod b.
Proof.
intros a b q r Ha (Hb,Hr) EQ.
destruct (div_mod_unique b q (a/b) r (a mod b)); auto.
- apply mod_bound_pos; order.
- rewrite <- div_mod; order.
Qed.
Theorem div_unique_exact a b q:
0<=a -> 0<b -> a == b*q -> q == a/b.
Proof.
intros Ha Hb H. apply div_unique with 0; nzsimpl; now try split.
Qed.
(** A division by itself returns 1 *)
Lemma div_same : forall a, 0<a -> a/a == 1.
Proof.
intros. symmetry. apply div_unique_exact; nzsimpl; order.
Qed.
Lemma mod_same : forall a, 0<a -> a mod a == 0.
Proof.
intros. symmetry.
apply mod_unique with 1; intuition; try order.
now nzsimpl.
Qed.
(** A division of a small number by a bigger one yields zero. *)
Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
Proof.
intros a b ?. symmetry.
apply div_unique with a; intuition; try order.
now nzsimpl.
Qed.
(** Same situation, in term of modulo: *)
Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
Proof.
intros. symmetry.
apply mod_unique with 0; intuition; try order.
now nzsimpl.
Qed.
(** * Basic values of divisions and modulo. *)
Lemma div_0_l: forall a, 0<a -> 0/a == 0.
Proof.
intros; apply div_small; split; order.
Qed.
Lemma mod_0_l: forall a, 0<a -> 0 mod a == 0.
Proof.
intros; apply mod_small; split; order.
Qed.
Lemma div_1_r: forall a, 0<=a -> a/1 == a.
Proof.
intros. symmetry. apply div_unique_exact; nzsimpl; order'.
Qed.
Lemma mod_1_r: forall a, 0<=a -> a mod 1 == 0.
Proof.
intros a ?. symmetry.
apply mod_unique with a; try split; try order; try apply lt_0_1.
now nzsimpl.
Qed.
Lemma div_1_l: forall a, 1<a -> 1/a == 0.
Proof.
intros; apply div_small; split; auto. apply le_0_1.
Qed.
Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
Proof.
intros; apply mod_small; split; auto. apply le_0_1.
Qed.
Lemma div_mul : forall a b, 0<=a -> 0<b -> (a*b)/b == a.
Proof.
intros; symmetry. apply div_unique_exact; trivial.
- apply mul_nonneg_nonneg; order.
- apply mul_comm.
Qed.
Lemma mod_mul : forall a b, 0<=a -> 0<b -> (a*b) mod b == 0.
Proof.
intros a b ? ?; symmetry.
apply mod_unique with a; try split; try order.
- apply mul_nonneg_nonneg; order.
- nzsimpl; apply mul_comm.
Qed.
(** * Order results about mod and div *)
(** A modulo cannot grow beyond its starting point. *)
Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a.
Proof.
intros a b ? ?. destruct (le_gt_cases b a).
- apply le_trans with b; auto.
apply lt_le_incl. destruct (mod_bound_pos a b); auto.
- rewrite lt_eq_cases; right.
apply mod_small; auto.
Qed.
(* Division of positive numbers is positive. *)
Lemma div_pos: forall a b, 0<=a -> 0<b -> 0 <= a/b.
Proof.
intros a b ? ?.
rewrite (mul_le_mono_pos_l _ _ b); auto; nzsimpl.
rewrite (add_le_mono_r _ _ (a mod b)).
rewrite <- div_mod by order.
nzsimpl.
apply mod_le; auto.
Qed.
Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
Proof.
intros a b (Hb,Hab).
assert (LE : 0 <= a/b) by (apply div_pos; order).
assert (MOD : a mod b < b) by (destruct (mod_bound_pos a b); order).
rewrite lt_eq_cases in LE; destruct LE as [LT|EQ]; auto.
exfalso; revert Hab.
rewrite (div_mod a b), <-EQ; nzsimpl; order.
Qed.
Lemma div_small_iff : forall a b, 0<=a -> 0<b -> (a/b==0 <-> a<b).
Proof.
intros a b Ha Hb; split; intros Hab.
- destruct (lt_ge_cases a b); auto.
symmetry in Hab. contradict Hab. apply lt_neq, div_str_pos; auto.
- apply div_small; auto.
Qed.
Lemma mod_small_iff : forall a b, 0<=a -> 0<b -> (a mod b == a <-> a<b).
Proof.
intros a b Ha Hb. split; intros H; auto using mod_small.
rewrite <- div_small_iff; auto.
rewrite <- (mul_cancel_l _ _ b) by order.
rewrite <- (add_cancel_r _ _ (a mod b)).
rewrite <- div_mod, H by order. now nzsimpl.
Qed.
Lemma div_str_pos_iff : forall a b, 0<=a -> 0<b -> (0<a/b <-> b<=a).
Proof.
intros a b Ha Hb; split; intros Hab.
- destruct (lt_ge_cases a b) as [LT|LE]; auto.
rewrite <- div_small_iff in LT; order.
- apply div_str_pos; auto.
Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
Proof.
intros a b ? ?.
assert (0 < b) by (apply lt_trans with 1; auto using lt_0_1).
destruct (lt_ge_cases a b).
- rewrite div_small; try split; order.
- rewrite (div_mod a b) at 2 by order.
apply lt_le_trans with (b*(a/b)).
+ rewrite <- (mul_1_l (a/b)) at 1.
rewrite <- mul_lt_mono_pos_r; auto.
apply div_str_pos; auto.
+ rewrite <- (add_0_r (b*(a/b))) at 1.
rewrite <- add_le_mono_l. destruct (mod_bound_pos a b); order.
Qed.
(** [le] is compatible with a positive division. *)
Lemma div_le_mono : forall a b c, 0<c -> 0<=a<=b -> a/c <= b/c.
Proof.
intros a b c Hc (Ha,Hab).
rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ];
[|rewrite EQ; order].
rewrite <- lt_succ_r.
rewrite (mul_lt_mono_pos_l c) by order.
nzsimpl.
rewrite (add_lt_mono_r _ _ (a mod c)).
rewrite <- div_mod by order.
apply lt_le_trans with b; auto.
rewrite (div_mod b c) at 1 by order.
rewrite <- add_assoc, <- add_le_mono_l.
apply le_trans with (c+0).
- nzsimpl; destruct (mod_bound_pos b c); order.
- rewrite <- add_le_mono_l. destruct (mod_bound_pos a c); order.
Qed.
(** The following two properties could be used as specification of div *)
Lemma mul_div_le : forall a b, 0<=a -> 0<b -> b*(a/b) <= a.
Proof.
intros a b ? ?.
rewrite (add_le_mono_r _ _ (a mod b)), <- div_mod by order.
rewrite <- (add_0_r a) at 1.
rewrite <- add_le_mono_l. destruct (mod_bound_pos a b); order.
Qed.
Lemma mul_succ_div_gt : forall a b, 0<=a -> 0<b -> a < b*(S (a/b)).
Proof.
intros a b ? ?.
rewrite (div_mod a b) at 1 by order.
rewrite (mul_succ_r).
rewrite <- add_lt_mono_l.
destruct (mod_bound_pos a b); auto.
Qed.
(** The previous inequality is exact iff the modulo is zero. *)
Lemma div_exact : forall a b, 0<=a -> 0<b -> (a == b*(a/b) <-> a mod b == 0).
Proof.
intros a b ? ?. rewrite (div_mod a b) at 1 by order.
rewrite <- (add_0_r (b*(a/b))) at 2.
apply add_cancel_l.
Qed.
(** Some additional inequalities about div. *)
Theorem div_lt_upper_bound:
forall a b q, 0<=a -> 0<b -> a < b*q -> a/b < q.
Proof.
intros a b q ? ? ?.
rewrite (mul_lt_mono_pos_l b) by order.
apply le_lt_trans with a; auto.
apply mul_div_le; auto.
Qed.
Theorem div_le_upper_bound:
forall a b q, 0<=a -> 0<b -> a <= b*q -> a/b <= q.
Proof.
intros a b q ? ? ?.
rewrite (mul_le_mono_pos_l _ _ b) by order.
apply le_trans with a; auto.
apply mul_div_le; auto.
Qed.
Theorem div_le_lower_bound:
forall a b q, 0<=a -> 0<b -> b*q <= a -> q <= a/b.
Proof.
intros a b q Ha Hb H.
destruct (lt_ge_cases 0 q).
- rewrite <- (div_mul q b); try order.
apply div_le_mono; auto.
rewrite mul_comm; split; auto.
apply lt_le_incl, mul_pos_pos; auto.
- apply le_trans with 0; auto; apply div_pos; auto.
Qed.
(** A division respects opposite monotonicity for the divisor *)
Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r ->
p/r <= p/q.
Proof.
intros p q r Hp (Hq,Hqr).
apply div_le_lower_bound; auto.
rewrite (div_mod p r) at 2 by order.
apply le_trans with (r*(p/r)).
- apply mul_le_mono_nonneg_r; try order.
apply div_pos; order.
- rewrite <- (add_0_r (r*(p/r))) at 1.
rewrite <- add_le_mono_l. destruct (mod_bound_pos p r); order.
Qed.
(** * Relations between usual operations and mod and div *)
Lemma mod_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c ->
(a + b * c) mod c == a mod c.
Proof.
intros a b c ? ? ?.
symmetry.
apply mod_unique with (a/c+b); auto.
- apply mod_bound_pos; auto.
- rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
now rewrite mul_comm.
Qed.
Lemma div_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c ->
(a + b * c) / c == a / c + b.
Proof.
intros a b c ? ? ?.
apply (mul_cancel_l _ _ c); try order.
apply (add_cancel_r _ _ ((a+b*c) mod c)).
rewrite <- div_mod, mod_add by order.
rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
now rewrite mul_comm.
Qed.
Lemma div_add_l: forall a b c, 0<=c -> 0<=a*b+c -> 0<b ->
(a * b + c) / b == a + c / b.
Proof.
intros a b c. rewrite (add_comm _ c), (add_comm a).
intros. apply div_add; auto.
Qed.
(** Cancellations. *)
Lemma div_mul_cancel_r : forall a b c, 0<=a -> 0<b -> 0<c ->
(a*c)/(b*c) == a/b.
Proof.
intros a b c ? ? ?.
symmetry.
apply div_unique with ((a mod b)*c).
- apply mul_nonneg_nonneg; order.
- split.
+ apply mul_nonneg_nonneg; destruct (mod_bound_pos a b); order.
+ rewrite <- mul_lt_mono_pos_r; auto. destruct (mod_bound_pos a b); auto.
- rewrite (div_mod a b) at 1 by order.
rewrite mul_add_distr_r.
rewrite add_cancel_r.
rewrite <- 2 mul_assoc. now rewrite (mul_comm c).
Qed.
Lemma div_mul_cancel_l : forall a b c, 0<=a -> 0<b -> 0<c ->
(c*a)/(c*b) == a/b.
Proof.
intros a b c ? ? ?. rewrite !(mul_comm c); apply div_mul_cancel_r; auto.
Qed.
(** Operations modulo. *)
Theorem mod_mod: forall a n, 0<=a -> 0<n ->
(a mod n) mod n == a mod n.
Proof.
intros a n ? ?. destruct (mod_bound_pos a n); auto. now rewrite mod_small_iff.
Qed.
Lemma mul_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n ->
((a mod n)*b) mod n == (a*b) mod n.
Proof.
intros a b n Ha Hb Hn. symmetry.
generalize (mul_nonneg_nonneg _ _ Ha Hb).
rewrite (div_mod a n) at 1 2 by order.
rewrite add_comm, (mul_comm n), (mul_comm _ b).
rewrite mul_add_distr_l, mul_assoc.
intros. rewrite mod_add; auto.
- now rewrite mul_comm.
- apply mul_nonneg_nonneg; destruct (mod_bound_pos a n); auto.
Qed.
Lemma mul_mod_idemp_r : forall a b n, 0<=a -> 0<=b -> 0<n ->
(a*(b mod n)) mod n == (a*b) mod n.
Proof.
intros a b n ? ? ?. rewrite !(mul_comm a). apply mul_mod_idemp_l; auto.
Qed.
Theorem mul_mod: forall a b n, 0<=a -> 0<=b -> 0<n ->
(a * b) mod n == ((a mod n) * (b mod n)) mod n.
Proof.
intros a b n ? ? ?. rewrite mul_mod_idemp_l, mul_mod_idemp_r; trivial.
- reflexivity.
- now destruct (mod_bound_pos b n).
Qed.
Lemma add_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n ->
((a mod n)+b) mod n == (a+b) mod n.
Proof.
intros a b n Ha Hb Hn. symmetry.
generalize (add_nonneg_nonneg _ _ Ha Hb).
rewrite (div_mod a n) at 1 2 by order.
rewrite <- add_assoc, add_comm, mul_comm.
intros. rewrite mod_add; trivial. - reflexivity.
- apply add_nonneg_nonneg; auto. destruct (mod_bound_pos a n); auto.
Qed.
Lemma add_mod_idemp_r : forall a b n, 0<=a -> 0<=b -> 0<n ->
(a+(b mod n)) mod n == (a+b) mod n.
Proof.
intros a b n ? ? ?. rewrite !(add_comm a). apply add_mod_idemp_l; auto.
Qed.
Theorem add_mod: forall a b n, 0<=a -> 0<=b -> 0<n ->
(a+b) mod n == (a mod n + b mod n) mod n.
Proof.
intros a b n ? ? ?. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial.
- reflexivity.
- now destruct (mod_bound_pos b n).
Qed.
Lemma div_div : forall a b c, 0<=a -> 0<b -> 0<c ->
(a/b)/c == a/(b*c).
Proof.
intros a b c Ha Hb Hc.
apply div_unique with (b*((a/b) mod c) + a mod b); trivial.
(* begin 0<= ... <b*c *)
- destruct (mod_bound_pos (a/b) c), (mod_bound_pos a b); auto using div_pos.
split.
+ apply add_nonneg_nonneg; auto.
apply mul_nonneg_nonneg; order.
+ apply lt_le_trans with (b*((a/b) mod c) + b).
* rewrite <- add_lt_mono_l; auto.
* rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l; auto.
(* end 0<= ... < b*c *)
- rewrite (div_mod a b) at 1 by order.
rewrite add_assoc, add_cancel_r.
rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
apply div_mod; order.
Qed.
Lemma mod_mul_r : forall a b c, 0<=a -> 0<b -> 0<c ->
a mod (b*c) == a mod b + b*((a/b) mod c).
Proof.
intros a b c Ha Hb Hc.
apply add_cancel_l with (b*c*(a/(b*c))).
rewrite <- div_mod by (apply neq_mul_0; split; order).
rewrite <- div_div by trivial.
rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
rewrite <- div_mod by order.
apply div_mod; order.
Qed.
Lemma add_mul_mod_distr_l: forall a b c d, 0<=a -> 0<b -> 0<=d<c ->
(c*a+d) mod (c*b) == c*(a mod b)+d.
Proof.
intros a b c d ? ? [? ?].
assert (0 <= a*c) by (apply mul_nonneg_nonneg; order).
assert (0 <= a*c+d) by (apply add_nonneg_nonneg; order).
rewrite (mul_comm c a), mod_mul_r, add_mod, mod_mul, div_add_l; [|order ..].
now rewrite ? add_0_l, div_small, add_0_r, ? (mod_small d c), (add_comm d).
Qed.
Lemma add_mul_mod_distr_r: forall a b c d, 0<=a -> 0<b -> 0<=d<c ->
(a*c+d) mod (b*c) == (a mod b)*c+d.
Proof.
intros a b c d ? ? ?. now rewrite !(mul_comm _ c), add_mul_mod_distr_l.
Qed.
Lemma mul_mod_distr_l: forall a b c, 0<=a -> 0<b -> 0<c ->
(c*a) mod (c*b) == c * (a mod b).
Proof.
intros a b c ? ? ?. pose proof (E := add_mul_mod_distr_l a b c 0).
rewrite ? add_0_r in E. now apply E.
Qed.
Lemma mul_mod_distr_r: forall a b c, 0<=a -> 0<b -> 0<c ->
(a*c) mod (b*c) == (a mod b) * c.
Proof.
intros a b c ? ? ?. now rewrite !(mul_comm _ c), mul_mod_distr_l.
Qed.
(** A last inequality: *)
Theorem div_mul_le:
forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proof.
intros a b c ? ? ?.
apply div_le_lower_bound; auto.
- apply mul_nonneg_nonneg; auto.
- rewrite mul_assoc, (mul_comm b c), <- mul_assoc.
apply mul_le_mono_nonneg_l; auto.
apply mul_div_le; auto.
Qed.
(** mod is related to divisibility *)
Lemma mod_divides : forall a b, 0<=a -> 0<b ->
(a mod b == 0 <-> exists c, a == b*c).
Proof.
intros a b ? ?; split.
- intros. exists (a/b). rewrite div_exact; auto.
- intros (c,Hc). rewrite Hc, mul_comm. apply mod_mul; auto.
rewrite (mul_le_mono_pos_l _ _ b); auto. nzsimpl. order.
Qed.
End NZDivProp.
|