1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import BinPos PeanoNat.
(** Properties of the injection from binary positive numbers
to Peano natural numbers *)
(** Original development by Pierre Crégut, CNET, Lannion, France *)
Local Open Scope positive_scope.
Local Open Scope nat_scope.
Module Pos2Nat.
Import Pos.
(** [Pos.to_nat] is a morphism for successor, addition, multiplication *)
Lemma inj_succ p : to_nat (succ p) = S (to_nat p).
Proof.
unfold to_nat. rewrite iter_op_succ. trivial.
apply Nat.add_assoc.
Qed.
Theorem inj_add p q : to_nat (p + q) = to_nat p + to_nat q.
Proof.
revert q. induction p as [|p IHp] using peano_ind; intros q.
now rewrite add_1_l, inj_succ.
now rewrite add_succ_l, !inj_succ, IHp.
Qed.
Theorem inj_mul p q : to_nat (p * q) = to_nat p * to_nat q.
Proof.
revert q. induction p as [|p IHp] using peano_ind; simpl; intros; trivial.
now rewrite mul_succ_l, inj_add, IHp, inj_succ.
Qed.
(** Mapping of xH, xO and xI through [Pos.to_nat] *)
Lemma inj_1 : to_nat 1 = 1.
Proof.
reflexivity.
Qed.
Lemma inj_xO p : to_nat (xO p) = 2 * to_nat p.
Proof.
exact (inj_mul 2 p).
Qed.
Lemma inj_xI p : to_nat (xI p) = S (2 * to_nat p).
Proof.
now rewrite xI_succ_xO, inj_succ, inj_xO.
Qed.
(** [Pos.to_nat] maps to the strictly positive subset of [nat] *)
Lemma is_succ p : exists n, to_nat p = S n.
Proof.
induction p as [|p IHp] using peano_ind.
now exists 0.
destruct IHp as (n,Hn). exists (S n). now rewrite inj_succ, Hn.
Qed.
(** [Pos.to_nat] is strictly positive *)
Lemma is_pos p : 0 < to_nat p.
Proof.
destruct (is_succ p) as (n,->). apply Nat.lt_0_succ.
Qed.
(** [Pos.to_nat] is a bijection between [positive] and
non-zero [nat], with [Pos.of_nat] as reciprocal.
See [Nat2Pos.id] below for the dual equation. *)
Theorem id p : of_nat (to_nat p) = p.
Proof.
induction p as [|p IHp] using peano_ind. trivial.
rewrite inj_succ. rewrite <- IHp at 2.
now destruct (is_succ p) as (n,->).
Qed.
(** [Pos.to_nat] is hence injective *)
Lemma inj p q : to_nat p = to_nat q -> p = q.
Proof.
intros H. now rewrite <- (id p), <- (id q), H.
Qed.
Lemma inj_iff p q : to_nat p = to_nat q <-> p = q.
Proof.
split. apply inj. intros; now subst.
Qed.
(** [Pos.to_nat] is a morphism for comparison *)
Lemma inj_compare p q : (p ?= q)%positive = (to_nat p ?= to_nat q).
Proof.
revert q. induction p as [ |p IH] using peano_ind; intros q.
- destruct (succ_pred_or q) as [Hq|Hq]; [now subst|].
rewrite <- Hq, lt_1_succ, inj_succ, inj_1, Nat.compare_succ.
symmetry. apply Nat.compare_lt_iff, is_pos.
- destruct (succ_pred_or q) as [Hq|Hq]; [subst|].
rewrite compare_antisym, lt_1_succ, inj_succ. simpl.
symmetry. apply Nat.compare_gt_iff, is_pos.
now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH.
Qed.
(** [Pos.to_nat] is a morphism for [lt], [le], etc *)
Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q.
Proof.
unfold lt. now rewrite inj_compare, Nat.compare_lt_iff.
Qed.
Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q.
Proof.
unfold le. now rewrite inj_compare, Nat.compare_le_iff.
Qed.
Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q.
Proof.
unfold gt. now rewrite inj_compare, Nat.compare_gt_iff.
Qed.
Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q.
Proof.
unfold ge. now rewrite inj_compare, Nat.compare_ge_iff.
Qed.
(** [Pos.to_nat] is a morphism for subtraction *)
Theorem inj_sub p q : (q < p)%positive ->
to_nat (p - q) = to_nat p - to_nat q.
Proof.
intro H. apply Nat.add_cancel_r with (to_nat q).
rewrite Nat.sub_add.
now rewrite <- inj_add, sub_add.
now apply Nat.lt_le_incl, inj_lt.
Qed.
Theorem inj_sub_max p q :
to_nat (p - q) = Nat.max 1 (to_nat p - to_nat q).
Proof.
destruct (ltb_spec q p) as [H|H].
- (* q < p *)
rewrite <- inj_sub by trivial.
now destruct (is_succ (p - q)) as (m,->).
- (* p <= q *)
rewrite sub_le by trivial.
apply inj_le, Nat.sub_0_le in H. now rewrite H.
Qed.
Theorem inj_pred p : (1 < p)%positive ->
to_nat (pred p) = Nat.pred (to_nat p).
Proof.
intros. now rewrite <- Pos.sub_1_r, inj_sub, Nat.sub_1_r.
Qed.
Theorem inj_pred_max p :
to_nat (pred p) = Nat.max 1 (Peano.pred (to_nat p)).
Proof.
rewrite <- Pos.sub_1_r, <- Nat.sub_1_r. apply inj_sub_max.
Qed.
(** [Pos.to_nat] and other operations *)
Lemma inj_min p q :
to_nat (min p q) = Nat.min (to_nat p) (to_nat q).
Proof.
unfold min. rewrite inj_compare.
case Nat.compare_spec; intros H; symmetry.
- apply Nat.min_l. now rewrite H.
- now apply Nat.min_l, Nat.lt_le_incl.
- now apply Nat.min_r, Nat.lt_le_incl.
Qed.
Lemma inj_max p q :
to_nat (max p q) = Nat.max (to_nat p) (to_nat q).
Proof.
unfold max. rewrite inj_compare.
case Nat.compare_spec; intros H; symmetry.
- apply Nat.max_r. now rewrite H.
- now apply Nat.max_r, Nat.lt_le_incl.
- now apply Nat.max_l, Nat.lt_le_incl.
Qed.
Theorem inj_iter p {A} (f:A->A) (x:A) :
Pos.iter f x p = nat_rect _ x (fun _ => f) (to_nat p).
Proof.
induction p as [|p IHp] using peano_ind.
- trivial.
- intros. rewrite inj_succ, iter_succ.
simpl. f_equal. apply IHp.
Qed.
Theorem inj_pow p q : to_nat (p ^ q) = to_nat p ^ to_nat q.
Proof.
induction q as [|q IHq] using peano_ind.
- now rewrite Pos.pow_1_r, inj_1, Nat.pow_1_r.
- unfold Pos.pow. rewrite inj_succ, iter_succ, inj_mul. fold (Pos.pow p q).
now rewrite IHq.
Qed.
End Pos2Nat.
Module Nat2Pos.
(** [Pos.of_nat] is a bijection between non-zero [nat] and
[positive], with [Pos.to_nat] as reciprocal.
See [Pos2Nat.id] above for the dual equation. *)
Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n.
Proof.
induction n as [|n H]; trivial. now destruct 1.
intros _. simpl Pos.of_nat. destruct n. trivial.
rewrite Pos2Nat.inj_succ. f_equal. now apply H.
Qed.
Theorem id_max (n:nat) : Pos.to_nat (Pos.of_nat n) = max 1 n.
Proof.
destruct n. trivial. now rewrite id.
Qed.
(** [Pos.of_nat] is hence injective for non-zero numbers *)
Lemma inj (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat n = Pos.of_nat m -> n = m.
Proof.
intros Hn Hm H. now rewrite <- (id n), <- (id m), H.
Qed.
Lemma inj_iff (n m : nat) : n<>0 -> m<>0 ->
(Pos.of_nat n = Pos.of_nat m <-> n = m).
Proof.
split. now apply inj. intros; now subst.
Qed.
(** Usual operations are morphisms with respect to [Pos.of_nat]
for non-zero numbers. *)
Lemma inj_0 : Pos.of_nat 0 = 1%positive.
Proof. reflexivity. Qed.
Lemma inj_succ (n:nat) : n<>0 -> Pos.of_nat (S n) = Pos.succ (Pos.of_nat n).
Proof.
intro H. apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id.
Qed.
Lemma inj_pred (n:nat) : Pos.of_nat (pred n) = Pos.pred (Pos.of_nat n).
Proof.
destruct n as [|[|n]]; trivial. simpl. now rewrite Pos.pred_succ.
Qed.
Lemma inj_add (n m : nat) : n<>0 -> m<>0 ->
Pos.of_nat (n+m) = (Pos.of_nat n + Pos.of_nat m)%positive.
Proof.
intros Hn Hm. apply Pos2Nat.inj.
rewrite Pos2Nat.inj_add, !id; trivial.
intros H. destruct n. now destruct Hn. now simpl in H.
Qed.
Lemma inj_mul (n m : nat) : n<>0 -> m<>0 ->
Pos.of_nat (n*m) = (Pos.of_nat n * Pos.of_nat m)%positive.
Proof.
intros Hn Hm. apply Pos2Nat.inj.
rewrite Pos2Nat.inj_mul, !id; trivial.
intros H. apply Nat.mul_eq_0 in H. destruct H. now elim Hn. now elim Hm.
Qed.
Lemma inj_compare (n m : nat) : n<>0 -> m<>0 ->
(n ?= m) = (Pos.of_nat n ?= Pos.of_nat m)%positive.
Proof.
intros Hn Hm. rewrite Pos2Nat.inj_compare, !id; trivial.
Qed.
Lemma inj_sub (n m : nat) : m<>0 ->
Pos.of_nat (n-m) = (Pos.of_nat n - Pos.of_nat m)%positive.
Proof.
intros Hm.
apply Pos2Nat.inj.
rewrite Pos2Nat.inj_sub_max.
rewrite (id m) by trivial. rewrite !id_max.
destruct n, m; trivial.
Qed.
Lemma inj_min (n m : nat) :
Pos.of_nat (min n m) = Pos.min (Pos.of_nat n) (Pos.of_nat m).
Proof.
destruct n as [|n]. simpl. symmetry. apply Pos.min_l, Pos.le_1_l.
destruct m as [|m]. simpl. symmetry. apply Pos.min_r, Pos.le_1_l.
unfold Pos.min. rewrite <- inj_compare by easy.
case Nat.compare_spec; intros H; f_equal;
apply Nat.min_l || apply Nat.min_r.
rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl.
Qed.
Lemma inj_max (n m : nat) :
Pos.of_nat (max n m) = Pos.max (Pos.of_nat n) (Pos.of_nat m).
Proof.
destruct n as [|n]. simpl. symmetry. apply Pos.max_r, Pos.le_1_l.
destruct m as [|m]. simpl. symmetry. apply Pos.max_l, Pos.le_1_l.
unfold Pos.max. rewrite <- inj_compare by easy.
case Nat.compare_spec; intros H; f_equal;
apply Nat.max_l || apply Nat.max_r.
rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl.
Qed.
Theorem inj_pow (n m : nat) : m <> 0 ->
Pos.of_nat (n^m) = (Pos.of_nat n ^ Pos.of_nat m)%positive.
Proof.
intros Hm. apply Pos2Nat.inj. rewrite Pos2Nat.inj_pow.
destruct n.
- now rewrite Nat.pow_0_l, inj_0, Pos2Nat.inj_1, Nat.pow_1_l.
- now rewrite !id; [..|apply Nat.pow_nonzero].
Qed.
End Nat2Pos.
(**********************************************************************)
(** Properties of the shifted injection from Peano natural numbers
to binary positive numbers *)
Module Pos2SuccNat.
(** Composition of [Pos.to_nat] and [Pos.of_succ_nat] is successor
on [positive] *)
Theorem id_succ p : Pos.of_succ_nat (Pos.to_nat p) = Pos.succ p.
Proof.
rewrite Pos.of_nat_succ, <- Pos2Nat.inj_succ. apply Pos2Nat.id.
Qed.
(** Composition of [Pos.to_nat], [Pos.of_succ_nat] and [Pos.pred]
is identity on [positive] *)
Theorem pred_id p : Pos.pred (Pos.of_succ_nat (Pos.to_nat p)) = p.
Proof.
now rewrite id_succ, Pos.pred_succ.
Qed.
End Pos2SuccNat.
Module SuccNat2Pos.
(** Composition of [Pos.of_succ_nat] and [Pos.to_nat] is successor on [nat] *)
Theorem id_succ (n:nat) : Pos.to_nat (Pos.of_succ_nat n) = S n.
Proof.
rewrite Pos.of_nat_succ. now apply Nat2Pos.id.
Qed.
Theorem pred_id (n:nat) : pred (Pos.to_nat (Pos.of_succ_nat n)) = n.
Proof.
now rewrite id_succ.
Qed.
(** [Pos.of_succ_nat] is hence injective *)
Lemma inj (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m -> n = m.
Proof.
intro H. apply (f_equal Pos.to_nat) in H. rewrite !id_succ in H.
now injection H.
Qed.
Lemma inj_iff (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m <-> n = m.
Proof.
split. apply inj. intros; now subst.
Qed.
(** Another formulation *)
Theorem inv n p : Pos.to_nat p = S n -> Pos.of_succ_nat n = p.
Proof.
intros H. apply Pos2Nat.inj. now rewrite id_succ.
Qed.
(** Successor and comparison are morphisms with respect to
[Pos.of_succ_nat] *)
Lemma inj_succ n : Pos.of_succ_nat (S n) = Pos.succ (Pos.of_succ_nat n).
Proof.
apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id_succ.
Qed.
Lemma inj_compare n m :
(n ?= m) = (Pos.of_succ_nat n ?= Pos.of_succ_nat m)%positive.
Proof.
rewrite Pos2Nat.inj_compare, !id_succ; trivial.
Qed.
(** Other operations, for instance [Pos.add] and [plus] aren't
directly related this way (we would need to compensate for
the successor hidden in [Pos.of_succ_nat] *)
End SuccNat2Pos.
(** For compatibility, old names and old-style lemmas *)
Notation Psucc_S := Pos2Nat.inj_succ (only parsing).
Notation Pplus_plus := Pos2Nat.inj_add (only parsing).
Notation Pmult_mult := Pos2Nat.inj_mul (only parsing).
Notation Pcompare_nat_compare := Pos2Nat.inj_compare (only parsing).
Notation nat_of_P_xH := Pos2Nat.inj_1 (only parsing).
Notation nat_of_P_xO := Pos2Nat.inj_xO (only parsing).
Notation nat_of_P_xI := Pos2Nat.inj_xI (only parsing).
Notation nat_of_P_is_S := Pos2Nat.is_succ (only parsing).
Notation nat_of_P_pos := Pos2Nat.is_pos (only parsing).
Notation nat_of_P_inj_iff := Pos2Nat.inj_iff (only parsing).
Notation nat_of_P_inj := Pos2Nat.inj (only parsing).
Notation Plt_lt := Pos2Nat.inj_lt (only parsing).
Notation Pgt_gt := Pos2Nat.inj_gt (only parsing).
Notation Ple_le := Pos2Nat.inj_le (only parsing).
Notation Pge_ge := Pos2Nat.inj_ge (only parsing).
Notation Pminus_minus := Pos2Nat.inj_sub (only parsing).
Notation iter_nat_of_P := @Pos2Nat.inj_iter (only parsing).
Notation nat_of_P_of_succ_nat := SuccNat2Pos.id_succ (only parsing).
Notation P_of_succ_nat_of_P := Pos2SuccNat.id_succ (only parsing).
Notation nat_of_P_succ_morphism := Pos2Nat.inj_succ (only parsing).
Notation nat_of_P_plus_morphism := Pos2Nat.inj_add (only parsing).
Notation nat_of_P_mult_morphism := Pos2Nat.inj_mul (only parsing).
Notation nat_of_P_compare_morphism := Pos2Nat.inj_compare (only parsing).
Notation lt_O_nat_of_P := Pos2Nat.is_pos (only parsing).
Notation ZL4 := Pos2Nat.is_succ (only parsing).
Notation nat_of_P_o_P_of_succ_nat_eq_succ := SuccNat2Pos.id_succ (only parsing).
Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (only parsing).
Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (only parsing).
Lemma nat_of_P_minus_morphism p q :
Pos.compare_cont Eq p q = Gt ->
Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q.
Proof (fun H => Pos2Nat.inj_sub p q (Pos.gt_lt _ _ H)).
Lemma nat_of_P_lt_Lt_compare_morphism p q :
Pos.compare_cont Eq p q = Lt -> Pos.to_nat p < Pos.to_nat q.
Proof (proj1 (Pos2Nat.inj_lt p q)).
Lemma nat_of_P_gt_Gt_compare_morphism p q :
Pos.compare_cont Eq p q = Gt -> Pos.to_nat p > Pos.to_nat q.
Proof (proj1 (Pos2Nat.inj_gt p q)).
Lemma nat_of_P_lt_Lt_compare_complement_morphism p q :
Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont Eq p q = Lt.
Proof (proj2 (Pos2Nat.inj_lt p q)).
Definition nat_of_P_gt_Gt_compare_complement_morphism p q :
Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont Eq p q = Gt.
Proof (proj2 (Pos2Nat.inj_gt p q)).
(** Old intermediate results about [Pmult_nat] *)
Section ObsoletePmultNat.
Lemma Pmult_nat_mult : forall p n,
Pmult_nat p n = Pos.to_nat p * n.
Proof.
intro p; induction p as [p IHp|p IHp|]; intros n; unfold Pos.to_nat; simpl.
f_equal. rewrite 2 IHp. rewrite <- Nat.mul_assoc.
f_equal. simpl. now rewrite Nat.add_0_r.
rewrite 2 IHp. rewrite <- Nat.mul_assoc.
f_equal. simpl. now rewrite Nat.add_0_r.
simpl. now rewrite Nat.add_0_r.
Qed.
Lemma Pmult_nat_succ_morphism :
forall p n, Pmult_nat (Pos.succ p) n = n + Pmult_nat p n.
Proof.
intros. now rewrite !Pmult_nat_mult, Pos2Nat.inj_succ.
Qed.
Theorem Pmult_nat_l_plus_morphism :
forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
Proof.
intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply Nat.mul_add_distr_r.
Qed.
Theorem Pmult_nat_plus_carry_morphism :
forall p q n, Pmult_nat (Pos.add_carry p q) n = n + Pmult_nat (p + q) n.
Proof.
intros. now rewrite Pos.add_carry_spec, Pmult_nat_succ_morphism.
Qed.
Lemma Pmult_nat_r_plus_morphism :
forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
Proof.
intros. rewrite !Pmult_nat_mult. apply Nat.mul_add_distr_l.
Qed.
Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p.
Proof.
intros. rewrite Pmult_nat_mult, Nat.mul_comm. simpl. now rewrite Nat.add_0_r.
Qed.
Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n.
Proof.
intros p n. rewrite Pmult_nat_mult.
apply Nat.le_trans with (1*n). now rewrite Nat.mul_1_l.
apply Nat.mul_le_mono_r. apply Pos2Nat.is_pos.
Qed.
End ObsoletePmultNat.
|