File: ConstructiveAbs.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (328 lines) | stat: -rw-r--r-- 12,290 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(************************************************************************)

Require Import QArith.
Require Import Qabs.
Require Import ConstructiveReals.

Local Open Scope ConstructiveReals.

(** Properties of constructive absolute value (defined in
    ConstructiveReals.CRabs).
    Definition of minimum, maximum and their properties.

    WARNING: this file is experimental and likely to change in future releases.
*)

#[global]
Instance CRabs_morph
  : forall {R : ConstructiveReals},
    CMorphisms.Proper
      (CMorphisms.respectful (CReq R) (CReq R)) (CRabs R).
Proof.
  intros R x y [H H0]. split.
  - rewrite <- CRabs_def. split.
    + apply (CRle_trans _ x). apply H.
      pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
      apply H1. apply CRle_refl.
    + apply (CRle_trans _ (CRopp R x)). intro abs.
      apply CRopp_lt_cancel in abs. contradiction.
      pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
      apply H1. apply CRle_refl.
  - rewrite <- CRabs_def. split.
    + apply (CRle_trans _ y). apply H0.
      pose proof (CRabs_def R y (CRabs R y)) as [_ H1].
      apply H1. apply CRle_refl.
    + apply (CRle_trans _ (CRopp R y)). intro abs.
      apply CRopp_lt_cancel in abs. contradiction.
      pose proof (CRabs_def R y (CRabs R y)) as [_ H1].
      apply H1. apply CRle_refl.
Qed.

Add Parametric Morphism {R : ConstructiveReals} : (CRabs R)
    with signature CReq R ==> CReq R
      as CRabs_morph_prop.
Proof.
  intros. apply CRabs_morph, H.
Qed.

Lemma CRabs_right : forall {R : ConstructiveReals} (x : CRcarrier R),
    0 <= x -> CRabs R x == x.
Proof.
  intros. split.
  - pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
    apply H1, CRle_refl.
  - rewrite <- CRabs_def. split. apply CRle_refl.
    apply (CRle_trans _ 0). 2: exact H.
    apply (CRle_trans _ (CRopp R 0)).
    intro abs. apply CRopp_lt_cancel in abs. contradiction.
    apply (CRplus_le_reg_l 0).
    apply (CRle_trans _ 0). apply CRplus_opp_r.
    apply CRplus_0_r.
Qed.

Lemma CRabs_opp : forall {R : ConstructiveReals} (x : CRcarrier R),
    CRabs R (- x) == CRabs R x.
Proof.
  intros. split.
  - rewrite <- CRabs_def. split.
    + pose proof (CRabs_def R (CRopp R x) (CRabs R (CRopp R x))) as [_ H1].
      specialize (H1 (CRle_refl (CRabs R (CRopp R x)))) as [_ H1].
      apply (CRle_trans _ (CRopp R (CRopp R x))).
      2: exact H1. apply (CRopp_involutive x).
    + pose proof (CRabs_def R (CRopp R x) (CRabs R (CRopp R x))) as [_ H1].
      apply H1, CRle_refl.
  - rewrite <- CRabs_def. split.
    + pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
      apply H1, CRle_refl.
    + apply (CRle_trans _ x). apply CRopp_involutive.
      pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
      apply H1, CRle_refl.
Qed.

Lemma CRabs_minus_sym : forall {R : ConstructiveReals} (x y : CRcarrier R),
    CRabs R (x - y) == CRabs R (y - x).
Proof.
  intros R x y. setoid_replace (x - y) with (-(y-x)).
  rewrite CRabs_opp. reflexivity. unfold CRminus.
  rewrite CRopp_plus_distr, CRplus_comm, CRopp_involutive.
  reflexivity.
Qed.

Lemma CRabs_left : forall {R : ConstructiveReals} (x : CRcarrier R),
    x <= 0 -> CRabs R x == - x.
Proof.
  intros. rewrite <- CRabs_opp. apply CRabs_right.
  rewrite <- CRopp_0. apply CRopp_ge_le_contravar, H.
Qed.

Lemma CRabs_triang : forall {R : ConstructiveReals} (x y : CRcarrier R),
    CRabs R (x + y) <= CRabs R x + CRabs R y.
Proof.
  intros. rewrite <- CRabs_def. split.
  - apply (CRle_trans _ (CRplus R (CRabs R x) y)).
    apply CRplus_le_compat_r.
    pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
    apply H1, CRle_refl.
    apply CRplus_le_compat_l.
    pose proof (CRabs_def R y (CRabs R y)) as [_ H1].
    apply H1, CRle_refl.
  - apply (CRle_trans _ (CRplus R (CRopp R x) (CRopp R y))).
    apply CRopp_plus_distr.
    apply (CRle_trans _ (CRplus R (CRabs R x) (CRopp R y))).
    apply CRplus_le_compat_r.
    pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
    apply H1, CRle_refl.
    apply CRplus_le_compat_l.
    pose proof (CRabs_def R y (CRabs R y)) as [_ H1].
    apply H1, CRle_refl.
Qed.

Lemma CRabs_le : forall {R : ConstructiveReals} (a b:CRcarrier R),
    (-b <= a /\ a <= b) -> CRabs R a <= b.
Proof.
  intros. pose proof (CRabs_def R a b) as [H0 _].
  apply H0. split. apply H. destruct H.
  rewrite <- (CRopp_involutive b).
  apply CRopp_ge_le_contravar. exact H.
Qed.

Lemma CRabs_triang_inv : forall {R : ConstructiveReals} (x y : CRcarrier R),
    CRabs R x - CRabs R y <= CRabs R (x - y).
Proof.
  intros. apply (CRplus_le_reg_r (CRabs R y)).
  unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l.
  rewrite CRplus_0_r.
  apply (CRle_trans _ (CRabs R (x - y + y))).
  setoid_replace (x - y + y) with x. apply CRle_refl.
  unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l.
  rewrite CRplus_0_r. reflexivity.
  apply CRabs_triang.
Qed.

Lemma CRabs_triang_inv2 : forall {R : ConstructiveReals} (x y : CRcarrier R),
    CRabs R (CRabs R x - CRabs R y) <= CRabs R (x - y).
Proof.
  intros. apply CRabs_le. split.
  2: apply CRabs_triang_inv.
  apply (CRplus_le_reg_r (CRabs R y)).
  unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l.
  rewrite CRplus_0_r. fold (x - y).
  rewrite CRplus_comm, CRabs_minus_sym.
  apply (CRle_trans _ _ _ (CRabs_triang_inv y (y-x))).
  setoid_replace (y - (y - x)) with x. apply CRle_refl.
  unfold CRminus. rewrite CRopp_plus_distr, <- CRplus_assoc.
  rewrite CRplus_opp_r, CRplus_0_l. apply CRopp_involutive.
Qed.

Lemma CR_of_Q_abs : forall {R : ConstructiveReals} (q : Q),
    CRabs R (CR_of_Q R q) == CR_of_Q R (Qabs q).
Proof.
  intros. destruct (Qlt_le_dec 0 q).
  - apply (CReq_trans _ (CR_of_Q R q)).
    apply CRabs_right. apply CR_of_Q_le. apply Qlt_le_weak, q0.
    apply CR_of_Q_morph. symmetry. apply Qabs_pos, Qlt_le_weak, q0.
  - apply (CReq_trans _ (CR_of_Q R (-q))).
    apply (CReq_trans _ (CRabs R (CRopp R (CR_of_Q R q)))).
    apply CReq_sym, CRabs_opp.
    2: apply CR_of_Q_morph; symmetry; apply Qabs_neg, q0.
    apply (CReq_trans _ (CRopp R (CR_of_Q R q))).
    2: apply CReq_sym, CR_of_Q_opp.
    apply CRabs_right.
    apply (CRle_trans _ (CR_of_Q R (-q))). apply CR_of_Q_le.
    apply (Qplus_le_l _ _ q). ring_simplify. exact q0.
    apply CR_of_Q_opp.
Qed.

Lemma CRle_abs : forall {R : ConstructiveReals} (x : CRcarrier R),
    x <= CRabs R x.
Proof.
  intros. pose proof (CRabs_def R x (CRabs R x)) as [_ H].
  apply H, CRle_refl.
Qed.

Lemma CRabs_pos : forall {R : ConstructiveReals} (x : CRcarrier R),
    0 <= CRabs R x.
Proof.
  intros. intro abs. destruct (CRltLinear R). clear p.
  specialize (s _ x _ abs). destruct s.
  exact (CRle_abs x c). rewrite CRabs_left in abs.
  rewrite <- CRopp_0 in abs. apply CRopp_lt_cancel in abs.
  exact (CRlt_asym _ _ abs c). apply CRlt_asym, c.
Qed.

Lemma CRabs_appart_0 : forall {R : ConstructiveReals} (x : CRcarrier R),
    0 < CRabs R x -> x ≶ 0.
Proof.
  intros. destruct (CRltLinear R). clear p.
  pose proof (s _ x _ H) as [pos|neg].
  right. exact pos. left.
  destruct (CR_Q_dense R _ _ neg) as [q [H0 H1]].
  destruct (Qlt_le_dec 0 q).
  - destruct (s (CR_of_Q R (-q)) x 0).
    apply CR_of_Q_lt.
    apply (Qplus_lt_l _ _ q). ring_simplify. exact q0.
    exfalso. pose proof (CRabs_def R x (CR_of_Q R q)) as [H2 _].
    apply H2. clear H2. split. apply CRlt_asym, H0.
    2: exact H1. rewrite <- Qopp_involutive, CR_of_Q_opp.
    apply CRopp_ge_le_contravar, CRlt_asym, c. exact c.
  - apply (CRlt_le_trans _ _ _ H0).
    apply CR_of_Q_le. exact q0.
Qed.


(* The proof by cases on the signs of x and y applies constructively,
   because of the positivity hypotheses. *)
Lemma CRabs_mult : forall {R : ConstructiveReals} (x y : CRcarrier R),
    CRabs R (x * y) == CRabs R x * CRabs R y.
Proof.
  intro R.
  assert (forall (x y : CRcarrier R),
             x ≶ 0
             -> y ≶ 0
             -> CRabs R (x * y) == CRabs R x * CRabs R y) as prep.
  { intros. destruct H, H0.
    + rewrite CRabs_right, CRabs_left, CRabs_left.
      rewrite <- CRopp_mult_distr_l, CRopp_mult_distr_r, CRopp_involutive.
      reflexivity.
      apply CRlt_asym, c0. apply CRlt_asym, c.
      setoid_replace (x*y) with (- x * - y).
      apply CRlt_asym, CRmult_lt_0_compat.
      rewrite <- CRopp_0. apply CRopp_gt_lt_contravar, c.
      rewrite <- CRopp_0. apply CRopp_gt_lt_contravar, c0.
      rewrite <- CRopp_mult_distr_l, CRopp_mult_distr_r, CRopp_involutive.
      reflexivity.
    + rewrite CRabs_left, CRabs_left, CRabs_right.
      rewrite <- CRopp_mult_distr_l. reflexivity.
      apply CRlt_asym, c0. apply CRlt_asym, c.
      rewrite <- (CRmult_0_l y).
      apply CRmult_le_compat_r_half. exact c0.
      apply CRlt_asym, c.
    + rewrite CRabs_left, CRabs_right, CRabs_left.
      rewrite <- CRopp_mult_distr_r. reflexivity.
      apply CRlt_asym, c0. apply CRlt_asym, c.
      rewrite <- (CRmult_0_r x).
      apply CRmult_le_compat_l_half.
      exact c. apply CRlt_asym, c0.
    + rewrite CRabs_right, CRabs_right, CRabs_right. reflexivity.
      apply CRlt_asym, c0. apply CRlt_asym, c.
      apply CRlt_asym, CRmult_lt_0_compat; assumption. }
  split.
  - intro abs.
    assert (0 < CRabs R x * CRabs R y).
    { apply (CRle_lt_trans _ (CRabs R (x*y))).
      apply CRabs_pos. exact abs. }
    pose proof (CRmult_pos_appart_zero _ _ H).
    rewrite CRmult_comm in H.
    apply CRmult_pos_appart_zero in H.
    destruct H. 2: apply (CRabs_pos y c).
    destruct H0. 2: apply (CRabs_pos x c0).
    apply CRabs_appart_0 in c.
    apply CRabs_appart_0 in c0.
    rewrite (prep x y) in abs.
    exact (CRlt_asym _ _ abs abs). exact c0. exact c.
  - intro abs.
    assert (0 < CRabs R (x * y)).
    { apply (CRle_lt_trans _ (CRabs R x * CRabs R y)).
      rewrite <- (CRmult_0_l (CRabs R y)).
      apply CRmult_le_compat_r.
      apply CRabs_pos. apply CRabs_pos. exact abs. }
    apply CRabs_appart_0 in H. destruct H.
    + apply CRopp_gt_lt_contravar in c.
      rewrite CRopp_0, CRopp_mult_distr_l in c.
      pose proof (CRmult_pos_appart_zero _ _ c).
      rewrite CRmult_comm in c.
      apply CRmult_pos_appart_zero in c.
      rewrite (prep x y) in abs.
      exact (CRlt_asym _ _ abs abs).
      destruct H. left. apply CRopp_gt_lt_contravar in c0.
      rewrite CRopp_involutive, CRopp_0 in c0. exact c0.
      right. apply CRopp_gt_lt_contravar in c0.
      rewrite CRopp_involutive, CRopp_0 in c0. exact c0.
      destruct c. right. exact c. left. exact c.
    + pose proof (CRmult_pos_appart_zero _ _ c).
      rewrite CRmult_comm in c.
      apply CRmult_pos_appart_zero in c.
      rewrite (prep x y) in abs.
      exact (CRlt_asym _ _ abs abs).
      destruct H. right. exact c0. left. exact c0.
      destruct c. right. exact c. left. exact c.
Qed.

Lemma CRabs_lt : forall {R : ConstructiveReals} (x y : CRcarrier R),
    CRabs _ x < y -> prod (x < y) (-x < y).
Proof.
  split.
  - apply (CRle_lt_trans _ _ _ (CRle_abs x)), H.
  - apply (CRle_lt_trans _ _ _ (CRle_abs (-x))).
    rewrite CRabs_opp. exact H.
Qed.

Lemma CRabs_def1 : forall {R : ConstructiveReals} (x y : CRcarrier R),
    x < y -> -x < y -> CRabs _ x < y.
Proof.
  intros. destruct (CRltLinear R), p.
  destruct (s x (CRabs R x) y H). 2: exact c0.
  rewrite CRabs_left. exact H0. intro abs.
  rewrite CRabs_right in c0. exact (CRlt_asym x x c0 c0).
  apply CRlt_asym, abs.
Qed.

Lemma CRabs_def2 : forall {R : ConstructiveReals} (x a:CRcarrier R),
    CRabs _ x <= a -> (x <= a) /\ (- a <= x).
Proof.
  split.
  - exact (CRle_trans _ _ _ (CRle_abs _) H).
  - rewrite <- (CRopp_involutive x).
    apply CRopp_ge_le_contravar.
    rewrite <- CRabs_opp in H.
    exact (CRle_trans _ _ _ (CRle_abs _) H).
Qed.