1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
Require Import QArith.
Require Import Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveAbs.
Require Import ConstructiveRealsMorphisms.
Local Open Scope ConstructiveReals.
(** Definition and properties of minimum and maximum.
WARNING: this file is experimental and likely to change in future releases.
*)
(* Minimum *)
Definition CRmin {R : ConstructiveReals} (x y : CRcarrier R) : CRcarrier R
:= (x + y - CRabs _ (y - x)) * CR_of_Q _ (1#2).
Lemma CRmin_lt_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y < y -> CRmin x y == x.
Proof.
intros. unfold CRmin. unfold CRmin in H.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
left; apply CR_of_Q_pos; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRabs_right. unfold CRminus.
rewrite CRopp_plus_distr, CRplus_assoc, <- (CRplus_assoc y).
rewrite CRplus_opp_r, CRplus_0_l, CRopp_involutive. reflexivity.
apply (CRmult_lt_compat_r (CR_of_Q R 2)) in H.
2: apply CR_of_Q_pos; reflexivity.
intro abs. contradict H.
apply (CRle_trans _ (x + y - CRabs R (y - x))).
rewrite CRabs_left. 2: apply CRlt_asym, abs.
unfold CRminus. rewrite CRopp_involutive, CRplus_comm.
rewrite CRplus_assoc, <- (CRplus_assoc (-x)), CRplus_opp_l.
rewrite CRplus_0_l, (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRle_refl.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r. apply CRle_refl.
Qed.
Add Parametric Morphism {R : ConstructiveReals} : CRmin
with signature (CReq R) ==> (CReq R) ==> (CReq R)
as CRmin_morph.
Proof.
intros. unfold CRmin.
apply CRmult_morph. 2: reflexivity.
unfold CRminus.
rewrite H, H0. reflexivity.
Qed.
#[global]
Instance CRmin_morphT
: forall {R : ConstructiveReals},
CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (@CRmin R).
Proof.
intros R x y H z t H0.
rewrite H, H0. reflexivity.
Qed.
Lemma CRmin_l : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y <= x.
Proof.
intros. unfold CRmin.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
unfold CRminus. rewrite CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_r (CRabs _ (y + - x)+ -x)).
rewrite CRplus_assoc, <- (CRplus_assoc (-CRabs _ (y + - x))).
rewrite CRplus_opp_l, CRplus_0_l.
rewrite (CRplus_comm x), CRplus_assoc, CRplus_opp_l, CRplus_0_r.
apply CRle_abs.
Qed.
Lemma CRmin_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y <= y.
Proof.
intros. unfold CRmin.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite (CRplus_comm x).
unfold CRminus. rewrite CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite <- (CRopp_involutive y), <- CRopp_plus_distr, <- CRopp_plus_distr.
apply CRopp_ge_le_contravar. rewrite CRabs_opp, CRplus_comm.
apply CRle_abs.
Qed.
Lemma CRnegPartAbsMin : forall {R : ConstructiveReals} (x : CRcarrier R),
CRmin 0 x == (x - CRabs _ x) * (CR_of_Q _ (1#2)).
Proof.
intros. unfold CRmin. unfold CRminus. rewrite CRplus_0_l.
apply CRmult_morph. 2: reflexivity. rewrite CRopp_0, CRplus_0_r. reflexivity.
Qed.
Lemma CRmin_sym : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmin x y == CRmin y x.
Proof.
intros. unfold CRmin. apply CRmult_morph. 2: reflexivity.
rewrite CRabs_minus_sym. unfold CRminus.
rewrite (CRplus_comm x y). reflexivity.
Qed.
Lemma CRmin_mult :
forall {R : ConstructiveReals} (p q r : CRcarrier R),
0 <= r -> CRmin (r * p) (r * q) == r * CRmin p q.
Proof.
intros R p q r H. unfold CRmin.
setoid_replace (r * q - r * p) with (r * (q - p)).
rewrite CRabs_mult.
rewrite (CRabs_right r). 2: exact H.
rewrite <- CRmult_assoc. apply CRmult_morph. 2: reflexivity.
unfold CRminus. rewrite CRopp_mult_distr_r.
do 2 rewrite <- CRmult_plus_distr_l. reflexivity.
unfold CRminus. rewrite CRopp_mult_distr_r.
rewrite <- CRmult_plus_distr_l. reflexivity.
Qed.
Lemma CRmin_plus : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x + CRmin y z == CRmin (x + y) (x + z).
Proof.
intros. unfold CRmin.
unfold CRminus. setoid_replace (x + z + - (x + y)) with (z-y).
apply (CRmult_eq_reg_r (CR_of_Q _ 2)).
left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_plus_distr_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
do 3 rewrite (CRplus_assoc x). apply CRplus_morph. reflexivity.
do 2 rewrite <- CRplus_assoc. apply CRplus_morph. 2: reflexivity.
rewrite (CRplus_comm x). apply CRplus_assoc.
rewrite CRopp_plus_distr. rewrite <- CRplus_assoc.
apply CRplus_morph. 2: reflexivity.
rewrite CRplus_comm, <- CRplus_assoc, CRplus_opp_l.
apply CRplus_0_l.
Qed.
Lemma CRmin_left : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= y -> CRmin x y == x.
Proof.
intros. unfold CRmin.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRabs_right. unfold CRminus. rewrite CRopp_plus_distr.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l. apply CRopp_involutive.
rewrite <- (CRplus_opp_r x). apply CRplus_le_compat.
exact H. apply CRle_refl.
Qed.
Lemma CRmin_right : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= x -> CRmin x y == y.
Proof.
intros. unfold CRmin.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRabs_left. unfold CRminus. do 2 rewrite CRopp_plus_distr.
rewrite (CRplus_comm x y).
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
do 2 rewrite CRopp_involutive.
rewrite CRplus_comm, CRplus_assoc, CRplus_opp_l, CRplus_0_r. reflexivity.
rewrite <- (CRplus_opp_r x). apply CRplus_le_compat.
exact H. apply CRle_refl.
Qed.
Lemma CRmin_lt : forall {R : ConstructiveReals} (x y z : CRcarrier R),
z < x -> z < y -> z < CRmin x y.
Proof.
intros. unfold CRmin.
apply (CRmult_lt_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
apply (CRplus_lt_reg_l _ (CRabs _ (y - x) - (z*CR_of_Q R 2))).
unfold CRminus. rewrite CRplus_assoc. rewrite CRplus_opp_l, CRplus_0_r.
rewrite (CRplus_comm (CRabs R (y + - x))).
rewrite (CRplus_comm (x+y)), CRplus_assoc.
rewrite <- (CRplus_assoc (CRabs R (y + - x))), CRplus_opp_r, CRplus_0_l.
rewrite <- (CRplus_comm (x+y)).
apply CRabs_def1.
- unfold CRminus. rewrite <- (CRplus_comm y), CRplus_assoc.
apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l R (-x)).
rewrite CRopp_mult_distr_l.
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym.
apply CRopp_gt_lt_contravar, H.
apply CRopp_gt_lt_contravar, H.
- rewrite CRopp_plus_distr, CRopp_involutive.
rewrite CRplus_comm, CRplus_assoc.
apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l R (-y)).
rewrite CRopp_mult_distr_l.
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym.
apply CRopp_gt_lt_contravar, H0.
apply CRopp_gt_lt_contravar, H0.
Qed.
Lemma CRmin_contract : forall {R : ConstructiveReals} (x y a : CRcarrier R),
CRabs _ (CRmin x a - CRmin y a) <= CRabs _ (x - y).
Proof.
intros. unfold CRmin.
unfold CRminus. rewrite CRopp_mult_distr_l, <- CRmult_plus_distr_r.
rewrite (CRabs_morph
_ ((x - y + (CRabs _ (a - y) - CRabs _ (a - x))) * CR_of_Q R (1 # 2))).
rewrite CRabs_mult, (CRabs_right (CR_of_Q R (1 # 2))).
2: apply CR_of_Q_le; discriminate.
apply (CRle_trans _
((CRabs _ (x - y) * 1 + CRabs _ (x-y) * 1)
* CR_of_Q R (1 # 2))).
apply CRmult_le_compat_r.
apply CR_of_Q_le. discriminate.
apply (CRle_trans
_ (CRabs _ (x - y) + CRabs _ (CRabs _ (a - y) - CRabs _ (a - x)))).
apply CRabs_triang. rewrite CRmult_1_r. apply CRplus_le_compat_l.
rewrite (CRabs_morph (x-y) ((a-y)-(a-x))).
apply CRabs_triang_inv2.
unfold CRminus. rewrite (CRplus_comm (a + - y)).
rewrite <- CRplus_assoc. apply CRplus_morph. 2: reflexivity.
rewrite CRplus_comm, CRopp_plus_distr, <- CRplus_assoc.
rewrite CRplus_opp_r, CRopp_involutive, CRplus_0_l.
reflexivity.
rewrite <- CRmult_plus_distr_l.
rewrite <- (CR_of_Q_plus R 1 1).
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 + 1) * (1 # 2))%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r. apply CRle_refl.
unfold CRminus. apply CRmult_morph. 2: reflexivity.
do 4 rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite <- CRplus_assoc. rewrite CRplus_comm, CRopp_plus_distr.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite CRopp_plus_distr. rewrite (CRplus_comm (-a)).
rewrite CRplus_assoc, <- (CRplus_assoc (-a)), CRplus_opp_l.
rewrite CRplus_0_l, CRopp_involutive. reflexivity.
Qed.
Lemma CRmin_glb : forall {R : ConstructiveReals} (x y z:CRcarrier R),
z <= x -> z <= y -> z <= CRmin x y.
Proof.
intros. unfold CRmin.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
apply (CRplus_le_reg_l (CRabs _ (y-x) - (z*CR_of_Q R 2))).
unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r.
rewrite (CRplus_comm (CRabs R (y + - x) + - (z * CR_of_Q R 2))).
rewrite CRplus_assoc, <- (CRplus_assoc (- CRabs R (y + - x))).
rewrite CRplus_opp_l, CRplus_0_l.
apply CRabs_le. split.
- do 2 rewrite CRopp_plus_distr.
rewrite CRopp_involutive, (CRplus_comm y), CRplus_assoc.
apply CRplus_le_compat_l, (CRplus_le_reg_l y).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_compat; exact H0.
- rewrite (CRplus_comm x), CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite CRopp_mult_distr_l.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r.
apply CRplus_le_compat; apply CRopp_ge_le_contravar; exact H.
Qed.
Lemma CRmin_assoc : forall {R : ConstructiveReals} (a b c : CRcarrier R),
CRmin a (CRmin b c) == CRmin (CRmin a b) c.
Proof.
split.
- apply CRmin_glb.
+ apply (CRle_trans _ (CRmin a b)).
apply CRmin_l. apply CRmin_l.
+ apply CRmin_glb.
apply (CRle_trans _ (CRmin a b)).
apply CRmin_l. apply CRmin_r. apply CRmin_r.
- apply CRmin_glb.
+ apply CRmin_glb. apply CRmin_l.
apply (CRle_trans _ (CRmin b c)).
apply CRmin_r. apply CRmin_l.
+ apply (CRle_trans _ (CRmin b c)).
apply CRmin_r. apply CRmin_r.
Qed.
Lemma CRlt_min : forall {R : ConstructiveReals} (x y z : CRcarrier R),
z < CRmin x y -> prod (z < x) (z < y).
Proof.
intros. destruct (CR_Q_dense R _ _ H) as [q qmaj].
destruct qmaj.
split.
- apply (CRlt_le_trans _ (CR_of_Q R q) _ c).
intro abs. apply (CRlt_asym _ _ c0).
apply (CRle_lt_trans _ x). apply CRmin_l. exact abs.
- apply (CRlt_le_trans _ (CR_of_Q R q) _ c).
intro abs. apply (CRlt_asym _ _ c0).
apply (CRle_lt_trans _ y). apply CRmin_r. exact abs.
Qed.
(* Maximum *)
Definition CRmax {R : ConstructiveReals} (x y : CRcarrier R) : CRcarrier R
:= (x + y + CRabs _ (y - x)) * CR_of_Q _ (1#2).
Add Parametric Morphism {R : ConstructiveReals} : CRmax
with signature (CReq R) ==> (CReq R) ==> (CReq R)
as CRmax_morph.
Proof.
intros. unfold CRmax.
apply CRmult_morph. 2: reflexivity. unfold CRminus.
rewrite H, H0. reflexivity.
Qed.
#[global]
Instance CRmax_morphT
: forall {R : ConstructiveReals},
CMorphisms.Proper
(CMorphisms.respectful (CReq R) (CMorphisms.respectful (CReq R) (CReq R))) (@CRmax R).
Proof.
intros R x y H z t H0.
rewrite H, H0. reflexivity.
Qed.
Lemma CRmax_lub : forall {R : ConstructiveReals} (x y z:CRcarrier R),
x <= z -> y <= z -> CRmax x y <= z.
Proof.
intros. unfold CRmax.
apply (CRmult_le_reg_r (CR_of_Q _ 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
apply (CRplus_le_reg_l (-x-y)).
rewrite <- CRplus_assoc. unfold CRminus.
rewrite <- CRopp_plus_distr, CRplus_opp_l, CRplus_0_l.
apply CRabs_le. split.
- repeat rewrite CRopp_plus_distr.
do 2 rewrite CRopp_involutive.
rewrite (CRplus_comm x), CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRopp_plus_distr.
apply CRplus_le_compat; apply CRopp_ge_le_contravar; assumption.
- rewrite (CRplus_comm y), CRopp_plus_distr, CRplus_assoc.
apply CRplus_le_compat_l.
apply (CRplus_le_reg_l y).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
apply CRplus_le_compat; assumption.
Qed.
Lemma CRmax_l : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= CRmax x y.
Proof.
intros. unfold CRmax.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
setoid_replace 2%Q with (1+1)%Q. rewrite CR_of_Q_plus.
rewrite CRmult_plus_distr_l, CRmult_1_r, CRplus_assoc.
apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-y)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite CRabs_minus_sym, CRplus_comm.
apply CRle_abs. reflexivity.
Qed.
Lemma CRmax_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= CRmax x y.
Proof.
intros. unfold CRmax.
apply (CRmult_le_reg_r (CR_of_Q _ 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite (CRplus_comm x).
rewrite CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite CRplus_comm. apply CRle_abs.
Qed.
Lemma CRposPartAbsMax : forall {R : ConstructiveReals} (x : CRcarrier R),
CRmax 0 x == (x + CRabs _ x) * (CR_of_Q R (1#2)).
Proof.
intros. unfold CRmax. unfold CRminus. rewrite CRplus_0_l.
apply CRmult_morph. 2: reflexivity. rewrite CRopp_0, CRplus_0_r. reflexivity.
Qed.
Lemma CRmax_sym : forall {R : ConstructiveReals} (x y : CRcarrier R),
CRmax x y == CRmax y x.
Proof.
intros. unfold CRmax.
rewrite CRabs_minus_sym. apply CRmult_morph.
2: reflexivity. rewrite (CRplus_comm x y). reflexivity.
Qed.
Lemma CRmax_plus : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x + CRmax y z == CRmax (x + y) (x + z).
Proof.
intros. unfold CRmax.
setoid_replace (x + z - (x + y)) with (z-y).
apply (CRmult_eq_reg_r (CR_of_Q _ 2)).
left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_plus_distr_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRmult_1_r.
do 3 rewrite (CRplus_assoc x). apply CRplus_morph. reflexivity.
do 2 rewrite <- CRplus_assoc. apply CRplus_morph. 2: reflexivity.
rewrite (CRplus_comm x). apply CRplus_assoc.
unfold CRminus. rewrite CRopp_plus_distr. rewrite <- CRplus_assoc.
apply CRplus_morph. 2: reflexivity.
rewrite CRplus_comm, <- CRplus_assoc, CRplus_opp_l.
apply CRplus_0_l.
Qed.
Lemma CRmax_left : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= x -> CRmax x y == x.
Proof.
intros. unfold CRmax.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite CRabs_left. unfold CRminus. rewrite CRopp_plus_distr, CRopp_involutive.
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l. reflexivity.
rewrite <- (CRplus_opp_r x). apply CRplus_le_compat_r. exact H.
Qed.
Lemma CRmax_right : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= y -> CRmax x y == y.
Proof.
intros. unfold CRmax.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite (CRplus_comm x y).
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite CRabs_right. unfold CRminus. rewrite CRplus_comm.
rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r. reflexivity.
rewrite <- (CRplus_opp_r x). apply CRplus_le_compat_r. exact H.
Qed.
Lemma CRmax_contract : forall {R : ConstructiveReals} (x y a : CRcarrier R),
CRabs _ (CRmax x a - CRmax y a) <= CRabs _ (x - y).
Proof.
intros. unfold CRmax.
rewrite (CRabs_morph
_ ((x - y + (CRabs _ (a - x) - CRabs _ (a - y))) * CR_of_Q R (1 # 2))).
rewrite CRabs_mult, (CRabs_right (CR_of_Q R (1 # 2))).
2: apply CR_of_Q_le; discriminate.
apply (CRle_trans
_ ((CRabs _ (x - y) * 1 + CRabs _ (x-y) * 1)
* CR_of_Q R (1 # 2))).
apply CRmult_le_compat_r.
apply CR_of_Q_le. discriminate.
apply (CRle_trans
_ (CRabs _ (x - y) + CRabs _ (CRabs _ (a - x) - CRabs _ (a - y)))).
apply CRabs_triang. rewrite CRmult_1_r. apply CRplus_le_compat_l.
rewrite (CRabs_minus_sym x y).
rewrite (CRabs_morph (y-x) ((a-x)-(a-y))).
apply CRabs_triang_inv2.
unfold CRminus. rewrite (CRplus_comm (a + - x)).
rewrite <- CRplus_assoc. apply CRplus_morph. 2: reflexivity.
rewrite CRplus_comm, CRopp_plus_distr, <- CRplus_assoc.
rewrite CRplus_opp_r, CRopp_involutive, CRplus_0_l.
reflexivity.
rewrite <- CRmult_plus_distr_l.
rewrite <- (CR_of_Q_plus R 1 1).
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 + 1) * (1 # 2))%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r. apply CRle_refl.
unfold CRminus. rewrite CRopp_mult_distr_l.
rewrite <- CRmult_plus_distr_r. apply CRmult_morph. 2: reflexivity.
do 4 rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite <- CRplus_assoc. rewrite CRplus_comm, CRopp_plus_distr.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite CRopp_plus_distr. rewrite (CRplus_comm (-a)).
rewrite CRplus_assoc, <- (CRplus_assoc (-a)), CRplus_opp_l.
rewrite CRplus_0_l. apply CRplus_comm.
Qed.
Lemma CRmax_lub_lt : forall {R : ConstructiveReals} (x y z : CRcarrier R),
x < z -> y < z -> CRmax x y < z.
Proof.
intros. unfold CRmax.
apply (CRmult_lt_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
rewrite CRmult_1_r.
apply (CRplus_lt_reg_l _ (-y -x)). unfold CRminus.
rewrite CRplus_assoc, <- (CRplus_assoc (-x)), <- (CRplus_assoc (-x)).
rewrite CRplus_opp_l, CRplus_0_l, <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
apply CRabs_def1.
- rewrite (CRplus_comm y), (CRplus_comm (-y)), CRplus_assoc.
apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l _ y).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym, H0. exact H0.
- rewrite CRopp_plus_distr, CRopp_involutive.
rewrite CRplus_assoc. apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l _ x).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym, H. exact H.
Qed.
Lemma CRmax_assoc : forall {R : ConstructiveReals} (a b c : CRcarrier R),
CRmax a (CRmax b c) == CRmax (CRmax a b) c.
Proof.
split.
- apply CRmax_lub.
+ apply CRmax_lub. apply CRmax_l.
apply (CRle_trans _ (CRmax b c)).
apply CRmax_l. apply CRmax_r.
+ apply (CRle_trans _ (CRmax b c)).
apply CRmax_r. apply CRmax_r.
- apply CRmax_lub.
+ apply (CRle_trans _ (CRmax a b)).
apply CRmax_l. apply CRmax_l.
+ apply CRmax_lub.
apply (CRle_trans _ (CRmax a b)).
apply CRmax_r. apply CRmax_l. apply CRmax_r.
Qed.
Lemma CRmax_min_mult_neg :
forall {R : ConstructiveReals} (p q r:CRcarrier R),
r <= 0 -> CRmax (r * p) (r * q) == r * CRmin p q.
Proof.
intros R p q r H. unfold CRmin, CRmax.
setoid_replace (r * q - r * p) with (r * (q - p)).
rewrite CRabs_mult.
rewrite (CRabs_left r), <- CRmult_assoc.
apply CRmult_morph. 2: reflexivity. unfold CRminus.
rewrite <- CRopp_mult_distr_l, CRopp_mult_distr_r,
CRmult_plus_distr_l, CRmult_plus_distr_l.
reflexivity. exact H.
unfold CRminus. rewrite CRmult_plus_distr_l, CRopp_mult_distr_r. reflexivity.
Qed.
Lemma CRlt_max : forall {R : ConstructiveReals} (x y z : CRcarrier R),
CRmax x y < z -> prod (x < z) (y < z).
Proof.
intros. destruct (CR_Q_dense R _ _ H) as [q qmaj].
destruct qmaj.
split.
- apply (CRlt_le_trans _ (CR_of_Q R q)).
apply (CRle_lt_trans _ (CRmax x y)). apply CRmax_l. exact c.
apply CRlt_asym, c0.
- apply (CRlt_le_trans _ (CR_of_Q R q)).
apply (CRle_lt_trans _ (CRmax x y)). apply CRmax_r. exact c.
apply CRlt_asym, c0.
Qed.
Lemma CRmax_mult :
forall {R : ConstructiveReals} (p q r:CRcarrier R),
0 <= r -> CRmax (r * p) (r * q) == r * CRmax p q.
Proof.
intros R p q r H. unfold CRmin, CRmax.
setoid_replace (r * q - r * p) with (r * (q - p)).
rewrite CRabs_mult.
rewrite (CRabs_right r), <- CRmult_assoc.
apply CRmult_morph. 2: reflexivity.
rewrite CRmult_plus_distr_l, CRmult_plus_distr_l.
reflexivity. exact H.
unfold CRminus. rewrite CRmult_plus_distr_l, CRopp_mult_distr_r. reflexivity.
Qed.
Lemma CRmin_max_mult_neg :
forall {R : ConstructiveReals} (p q r:CRcarrier R),
r <= 0 -> CRmin (r * p) (r * q) == r * CRmax p q.
Proof.
intros R p q r H. unfold CRmin, CRmax.
setoid_replace (r * q - r * p) with (r * (q - p)).
rewrite CRabs_mult.
rewrite (CRabs_left r), <- CRmult_assoc.
apply CRmult_morph. 2: reflexivity. unfold CRminus.
rewrite CRopp_mult_distr_l, CRopp_involutive,
CRmult_plus_distr_l, CRmult_plus_distr_l.
reflexivity. exact H.
unfold CRminus. rewrite CRmult_plus_distr_l, CRopp_mult_distr_r. reflexivity.
Qed.
Lemma CRmorph_min : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(a b : CRcarrier R1),
CRmorph f (CRmin a b)
== CRmin (CRmorph f a) (CRmorph f b).
Proof.
intros. unfold CRmin.
rewrite CRmorph_mult. apply CRmult_morph.
2: apply CRmorph_rat.
unfold CRminus. do 2 rewrite CRmorph_plus. apply CRplus_morph.
apply CRplus_morph. reflexivity. reflexivity.
rewrite CRmorph_opp. apply CRopp_morph.
rewrite <- CRmorph_abs. apply CRabs_morph.
rewrite CRmorph_plus. apply CRplus_morph.
reflexivity.
rewrite CRmorph_opp. apply CRopp_morph, CRmorph_proper. reflexivity.
Qed.
|