File: ConstructiveRealsMorphisms.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (1112 lines) | stat: -rw-r--r-- 50,086 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(************************************************************************)

(** Morphisms used to transport results from any instance of
    ConstructiveReals to any other.
    Between any two constructive reals structures R1 and R2,
    all morphisms R1 -> R2 are extensionally equal. We will
    further show that they exist, and so are isomorphisms.
    The difference between two morphisms R1 -> R2 is therefore
    the speed of computation.

    The canonical isomorphisms we provide here are often very slow,
    when a new implementation of constructive reals is added,
    it should define its own ad hoc isomorphisms for better speed.

    Apart from the speed, those unique isomorphisms also serve as
    sanity checks of the interface ConstructiveReals :
    it captures a concept with a strong notion of uniqueness.

    WARNING: this file is experimental and likely to change in future releases.
*)

Require Import QArith.
Require Import Qabs.
Require Import ConstructiveReals.
Require Import ConstructiveLimits.
Require Import ConstructiveAbs.

Local Open Scope ConstructiveReals.

Record ConstructiveRealsMorphism {R1 R2 : ConstructiveReals} : Set :=
  {
    CRmorph : CRcarrier R1 -> CRcarrier R2;
    CRmorph_rat : forall q : Q,
        CRmorph (CR_of_Q R1 q) == CR_of_Q R2 q;
    CRmorph_increasing : forall x y : CRcarrier R1,
        CRlt R1 x y -> CRlt R2 (CRmorph x) (CRmorph y);
  }.


Lemma CRmorph_increasing_inv
  : forall {R1 R2 : ConstructiveReals}
      (f : ConstructiveRealsMorphism)
      (x y : CRcarrier R1),
    CRlt R2 (CRmorph f x) (CRmorph f y)
    -> CRlt R1 x y.
Proof.
  intros. destruct (CR_Q_dense R2 _ _ H) as [q [H0 H1]].
  destruct (CR_Q_dense R2 _ _ H0) as [r [H2 H3]].
  apply lt_CR_of_Q, (CR_of_Q_lt R1) in H3.
  destruct (CRltLinear R1).
  destruct (s _ x _ H3).
  - exfalso. apply (CRmorph_increasing f) in c.
    destruct (CRmorph_rat f r) as [H4 _].
    apply (CRle_lt_trans _ _ _ H4) in c. clear H4.
    exact (CRlt_asym _ _ c H2).
  - clear H2 H3 r. apply (CRlt_trans _ _ _ c). clear c.
    destruct (CR_Q_dense R2 _ _ H1) as [t [H2 H3]].
    apply lt_CR_of_Q, (CR_of_Q_lt R1) in H2.
    destruct (s _ y _ H2). exact c.
    exfalso. apply (CRmorph_increasing f) in c.
    destruct (CRmorph_rat f t) as [_ H4].
    apply (CRlt_le_trans _ _ _ c) in H4. clear c.
    exact (CRlt_asym _ _ H4 H3).
Qed.

Lemma CRmorph_unique : forall {R1 R2 : ConstructiveReals}
                         (f g : @ConstructiveRealsMorphism R1 R2)
                         (x : CRcarrier R1),
    CRmorph f x == CRmorph g x.
Proof.
  split.
  - intro abs. destruct (CR_Q_dense R2 _ _ abs) as [q [H H0]].
    destruct (CRmorph_rat f q) as [H1 _].
    apply (CRlt_le_trans _ _ _ H) in H1. clear H.
    apply CRmorph_increasing_inv in H1.
    destruct (CRmorph_rat g q) as [_ H2].
    apply (CRle_lt_trans _ _ _ H2) in H0. clear H2.
    apply CRmorph_increasing_inv in H0.
    exact (CRlt_asym _ _ H0 H1).
  - intro abs. destruct (CR_Q_dense R2 _ _ abs) as [q [H H0]].
    destruct (CRmorph_rat f q) as [_ H1].
    apply (CRle_lt_trans _ _ _ H1) in H0. clear H1.
    apply CRmorph_increasing_inv in H0.
    destruct (CRmorph_rat g q) as [H2 _].
    apply (CRlt_le_trans _ _ _ H) in H2. clear H.
    apply CRmorph_increasing_inv in H2.
    exact (CRlt_asym _ _ H0 H2).
Qed.


(* The identity is the only endomorphism of constructive reals.
   For any ConstructiveReals R1, R2 and any morphisms
   f : R1 -> R2 and g : R2 -> R1,
   f and g are isomorphisms and are inverses of each other. *)
Lemma Endomorph_id
  : forall {R : ConstructiveReals} (f : @ConstructiveRealsMorphism R R)
      (x : CRcarrier R),
    CRmorph f x == x.
Proof.
  split.
  - intro abs. destruct (CR_Q_dense R _ _ abs) as [q [H0 H1]].
    destruct (CRmorph_rat f q) as [H _].
    apply (CRlt_le_trans _ _ _ H0) in H. clear H0.
    apply CRmorph_increasing_inv in H.
    exact (CRlt_asym _ _ H1 H).
  - intro abs. destruct (CR_Q_dense R _ _ abs) as [q [H0 H1]].
    destruct (CRmorph_rat f q) as [_ H].
    apply (CRle_lt_trans _ _ _ H) in H1. clear H.
    apply CRmorph_increasing_inv in H1.
    exact (CRlt_asym _ _ H1 H0).
Qed.

Lemma CRmorph_proper
  : forall {R1 R2 : ConstructiveReals}
      (f : @ConstructiveRealsMorphism R1 R2)
      (x y : CRcarrier R1),
    x == y -> CRmorph f x == CRmorph f y.
Proof.
  split.
  - intro abs. apply CRmorph_increasing_inv in abs.
    destruct H. contradiction.
  - intro abs. apply CRmorph_increasing_inv in abs.
    destruct H. contradiction.
Qed.

Definition CRmorph_compose {R1 R2 R3 : ConstructiveReals}
           (f : @ConstructiveRealsMorphism R1 R2)
           (g : @ConstructiveRealsMorphism R2 R3)
  : @ConstructiveRealsMorphism R1 R3.
Proof.
  apply (Build_ConstructiveRealsMorphism
           R1 R3 (fun x:CRcarrier R1 => CRmorph g (CRmorph f x))).
  - intro q. apply (CReq_trans _ (CRmorph g (CR_of_Q R2 q))).
    apply CRmorph_proper. apply CRmorph_rat. apply CRmorph_rat.
  - intros. apply CRmorph_increasing. apply CRmorph_increasing. exact H.
Defined.

Lemma CRmorph_le : forall {R1 R2 : ConstructiveReals}
                     (f : @ConstructiveRealsMorphism R1 R2)
                     (x y : CRcarrier R1),
    x <= y -> CRmorph f x <= CRmorph f y.
Proof.
  intros. intro abs. apply CRmorph_increasing_inv in abs. contradiction.
Qed.

Lemma CRmorph_le_inv : forall {R1 R2 : ConstructiveReals}
                         (f : @ConstructiveRealsMorphism R1 R2)
                         (x y : CRcarrier R1),
    CRmorph f x <= CRmorph f y -> x <= y.
Proof.
  intros. intro abs. apply (CRmorph_increasing f) in abs. contradiction.
Qed.

Lemma CRmorph_zero : forall {R1 R2 : ConstructiveReals}
                       (f : @ConstructiveRealsMorphism R1 R2),
    CRmorph f 0 == 0.
Proof.
  intros. apply (CReq_trans _ (CRmorph f (CR_of_Q R1 0))).
  apply CRmorph_proper. reflexivity.
  apply CRmorph_rat.
Qed.

Lemma CRmorph_one : forall {R1 R2 : ConstructiveReals}
                      (f : @ConstructiveRealsMorphism R1 R2),
    CRmorph f 1 == 1.
Proof.
  intros. apply (CReq_trans _ (CRmorph f (CR_of_Q R1 1))).
  apply CRmorph_proper. reflexivity.
  apply CRmorph_rat.
Qed.

Lemma CRmorph_opp : forall {R1 R2 : ConstructiveReals}
                      (f : @ConstructiveRealsMorphism R1 R2)
                      (x : CRcarrier R1),
    CRmorph f (- x) == - CRmorph f x.
Proof.
  split.
  - intro abs.
    destruct (CR_Q_dense R2 _ _ abs) as [q [H H0]]. clear abs.
    destruct (CRmorph_rat f q) as [H1 _].
    apply (CRlt_le_trans _ _ _ H) in H1. clear H.
    apply CRmorph_increasing_inv in H1.
    apply CRopp_gt_lt_contravar in H0.
    destruct (@CR_of_Q_opp R2 q) as [H2 _].
    apply (CRlt_le_trans _ _ _ H0) in H2. clear H0.
    pose proof (CRopp_involutive (CRmorph f x)) as [H _].
    apply (CRle_lt_trans _ _ _ H) in H2. clear H.
    destruct (CRmorph_rat f (-q)) as [H _].
    apply (CRlt_le_trans _ _ _ H2) in H. clear H2.
    apply CRmorph_increasing_inv in H.
    destruct (@CR_of_Q_opp R1 q) as [_ H2].
    apply (CRlt_le_trans _ _ _ H) in H2. clear H.
    apply CRopp_gt_lt_contravar in H2.
    pose proof (CRopp_involutive (CR_of_Q R1 q)) as [H _].
    apply (CRle_lt_trans _ _ _ H) in H2. clear H.
    exact (CRlt_asym _ _ H1 H2).
  - intro abs.
    destruct (CR_Q_dense R2 _ _ abs) as [q [H H0]]. clear abs.
    destruct (CRmorph_rat f q) as [_ H1].
    apply (CRle_lt_trans _ _ _ H1) in H0. clear H1.
    apply CRmorph_increasing_inv in H0.
    apply CRopp_gt_lt_contravar in H.
    pose proof (CRopp_involutive (CRmorph f x)) as [_ H1].
    apply (CRlt_le_trans _ _ _ H) in H1. clear H.
    destruct (@CR_of_Q_opp R2 q) as [_ H2].
    apply (CRle_lt_trans _ _ _ H2) in H1. clear H2.
    destruct (CRmorph_rat f (-q)) as [_ H].
    apply (CRle_lt_trans _ _ _ H) in H1. clear H.
    apply CRmorph_increasing_inv in H1.
    destruct (@CR_of_Q_opp R1 q) as [H2 _].
    apply (CRle_lt_trans _ _ _ H2) in H1. clear H2.
    apply CRopp_gt_lt_contravar in H1.
    pose proof (CRopp_involutive (CR_of_Q R1 q)) as [_ H].
    apply (CRlt_le_trans _ _ _ H1) in H. clear H1.
    exact (CRlt_asym _ _ H0 H).
Qed.

Lemma CRplus_pos_rat_lt : forall {R : ConstructiveReals} (x : CRcarrier R) (q : Q),
    Qlt 0 q -> CRlt R x (CRplus R x (CR_of_Q R q)).
Proof.
  intros.
  apply (CRle_lt_trans _ (CRplus R x 0)). apply CRplus_0_r.
  apply CRplus_lt_compat_l.
  apply (CRle_lt_trans _ (CR_of_Q R 0)). apply CRle_refl.
  apply CR_of_Q_lt. exact H.
Qed.

Lemma CRplus_neg_rat_lt : forall {R : ConstructiveReals} (x : CRcarrier R) (q : Q),
    Qlt q 0 -> CRlt R (CRplus R x (CR_of_Q R q)) x.
Proof.
  intros.
  apply (CRlt_le_trans _ (CRplus R x 0)). 2: apply CRplus_0_r.
  apply CRplus_lt_compat_l.
  apply (CRlt_le_trans _ (CR_of_Q R 0)).
  apply CR_of_Q_lt. exact H. apply CRle_refl.
Qed.

Lemma CRmorph_plus_rat : forall {R1 R2 : ConstructiveReals}
                                (f : @ConstructiveRealsMorphism R1 R2)
                                (x : CRcarrier R1) (q : Q),
    CRmorph f (CRplus R1 x (CR_of_Q R1 q))
    == CRplus R2 (CRmorph f x) (CR_of_Q R2 q).
Proof.
  split.
  - intro abs.
    destruct (CR_Q_dense R2 _ _ abs) as [r [H H0]]. clear abs.
    destruct (CRmorph_rat f r) as [H1 _].
    apply (CRlt_le_trans _ _ _ H) in H1. clear H.
    apply CRmorph_increasing_inv in H1.
    apply (CRlt_asym _ _ H1). clear H1.
    apply (CRplus_lt_reg_r (CRopp R1 (CR_of_Q R1 q))).
    apply (CRlt_le_trans _ x).
    apply (CRle_lt_trans _ (CR_of_Q R1 (r-q))).
    apply (CRle_trans _ (CRplus R1 (CR_of_Q R1 r) (CR_of_Q R1 (-q)))).
    apply CRplus_le_compat_l. destruct (@CR_of_Q_opp R1 q). exact H.
    destruct (CR_of_Q_plus R1 r (-q)). exact H.
    apply (CRmorph_increasing_inv f).
    apply (CRle_lt_trans _ (CR_of_Q R2 (r - q))).
    apply CRmorph_rat.
    apply (CRplus_lt_reg_r (CR_of_Q R2 q)).
    apply (CRle_lt_trans _ (CR_of_Q R2 r)). 2: exact H0.
    intro H.
    destruct (CR_of_Q_plus R2 (r-q) q) as [H1 _].
    apply (CRlt_le_trans _ _ _ H) in H1. clear H.
    apply lt_CR_of_Q in H1. ring_simplify in H1.
    exact (Qlt_not_le _ _ H1 (Qle_refl _)).
    destruct (CRisRing R1).
    apply (CRle_trans
             _ (CRplus R1 x (CRplus R1 (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))))).
    apply (CRle_trans _ (CRplus R1 x 0)).
    destruct (CRplus_0_r x). exact H.
    apply CRplus_le_compat_l. destruct (Ropp_def (CR_of_Q R1 q)). exact H.
    destruct (Radd_assoc x (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))).
    exact H1.
  - intro abs.
    destruct (CR_Q_dense R2 _ _ abs) as [r [H H0]]. clear abs.
    destruct (CRmorph_rat f r) as [_ H1].
    apply (CRle_lt_trans _ _ _ H1) in H0. clear H1.
    apply CRmorph_increasing_inv in H0.
    apply (CRlt_asym _ _ H0). clear H0.
    apply (CRplus_lt_reg_r (CRopp R1 (CR_of_Q R1 q))).
    apply (CRle_lt_trans _ x).
    destruct (CRisRing R1).
    apply (CRle_trans
             _ (CRplus R1 x (CRplus R1 (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))))).
    destruct (Radd_assoc x (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))).
    exact H0.
    apply (CRle_trans _ (CRplus R1 x 0)).
    apply CRplus_le_compat_l. destruct (Ropp_def (CR_of_Q R1 q)). exact H1.
    destruct (CRplus_0_r x). exact H1.
    apply (CRlt_le_trans _ (CR_of_Q R1 (r-q))).
    apply (CRmorph_increasing_inv f).
    apply (CRlt_le_trans _ (CR_of_Q R2 (r - q))).
    apply (CRplus_lt_reg_r (CR_of_Q R2 q)).
    apply (CRlt_le_trans _ _ _ H).
    2: apply CRmorph_rat.
    apply (CRle_trans _ (CR_of_Q R2 (r-q+q))).
    intro abs. apply lt_CR_of_Q in abs. ring_simplify in abs.
    exact (Qlt_not_le _ _ abs (Qle_refl _)).
    destruct (CR_of_Q_plus R2 (r-q) q). exact H1.
    apply (CRle_trans _ (CRplus R1 (CR_of_Q R1 r) (CR_of_Q R1 (-q)))).
    destruct (CR_of_Q_plus R1 r (-q)). exact H1.
    apply CRplus_le_compat_l. destruct (@CR_of_Q_opp R1 q). exact H1.
Qed.

Lemma CRmorph_plus : forall {R1 R2 : ConstructiveReals}
                       (f : @ConstructiveRealsMorphism R1 R2)
                       (x y : CRcarrier R1),
    CRmorph f (CRplus R1 x y)
    == CRplus R2 (CRmorph f x) (CRmorph f y).
Proof.
  intros R1 R2 f.
  assert (forall (x y : CRcarrier R1),
             CRplus R2 (CRmorph f x) (CRmorph f y)
             <= CRmorph f (CRplus R1 x y)).
  { intros x y abs. destruct (CR_Q_dense R2 _ _ abs) as [r [H H0]]. clear abs.
    destruct (CRmorph_rat f r) as [H1 _].
    apply (CRlt_le_trans _ _ _ H) in H1. clear H.
    apply CRmorph_increasing_inv in H1.
    apply (CRlt_asym _ _ H1). clear H1.
    destruct (CR_Q_dense R2 _ _ H0) as [q [H2 H3]].
    apply lt_CR_of_Q in H2.
    assert (Qlt (r-q) 0) as epsNeg.
    { apply (Qplus_lt_r _ _ q). ring_simplify. exact H2. }
    destruct (CR_Q_dense R1 _ _ (CRplus_neg_rat_lt x (r-q) epsNeg))
      as [s [H4 H5]].
    apply (CRlt_trans _ (CRplus R1 (CR_of_Q R1 s) y)).
    2: apply CRplus_lt_compat_r, H5.
    apply (CRmorph_increasing_inv f).
    apply (CRlt_le_trans _ (CRplus R2 (CR_of_Q R2 s) (CRmorph f y))).
    apply (CRmorph_increasing f) in H4.
    destruct (CRmorph_plus_rat f x (r-q)) as [H _].
    apply (CRle_lt_trans _ _ _ H) in H4. clear H.
    destruct (CRmorph_rat f s) as [_ H1].
    apply (CRlt_le_trans _ _ _ H4) in H1. clear H4.
    apply (CRlt_trans
             _ (CRplus R2 (CRplus R2 (CRmorph f x) (CR_of_Q R2 (r - q)))
                       (CRmorph f y))).
    2: apply CRplus_lt_compat_r, H1.
    apply (CRlt_le_trans
             _ (CRplus R2 (CRplus R2 (CR_of_Q R2 (r - q)) (CRmorph f x))
                       (CRmorph f y))).
    apply (CRlt_le_trans
             _ (CRplus R2 (CR_of_Q R2 (r - q))
                       (CRplus R2 (CRmorph f x) (CRmorph f y)))).
    apply (CRle_lt_trans _ (CRplus R2 (CR_of_Q R2 (r - q)) (CR_of_Q R2 q))).
    2: apply CRplus_lt_compat_l, H3.
    intro abs.
    destruct (CR_of_Q_plus R2 (r-q) q) as [_ H4].
    apply (CRle_lt_trans _ _ _ H4) in abs. clear H4.
    destruct (CRmorph_rat f r) as [_ H4].
    apply (CRlt_le_trans _ _ _ abs) in H4. clear abs.
    apply lt_CR_of_Q in H4. ring_simplify in H4.
    exact (Qlt_not_le _ _ H4 (Qle_refl _)).
    destruct (CRisRing R2); apply Radd_assoc.
    apply CRplus_le_compat_r. destruct (CRisRing R2).
    destruct (Radd_comm (CRmorph f x) (CR_of_Q R2 (r - q))).
    exact H.
    intro abs.
    destruct (CRmorph_plus_rat f y s) as [H _]. apply H. clear H.
    apply (CRlt_le_trans _ (CRplus R2 (CR_of_Q R2 s) (CRmorph f y))).
    apply (CRle_lt_trans _ (CRmorph f (CRplus R1 (CR_of_Q R1 s) y))).
    apply CRmorph_proper. destruct (CRisRing R1); apply Radd_comm.
    exact abs. destruct (CRisRing R2); apply Radd_comm. }
  split.
  - apply H.
  - specialize (H (CRplus R1 x y) (CRopp R1 y)).
    intro abs. apply H. clear H.
    apply (CRle_lt_trans _ (CRmorph f x)).
    apply CRmorph_proper. destruct (CRisRing R1).
    apply (CReq_trans _ (CRplus R1 x (CRplus R1 y (CRopp R1 y)))).
    apply CReq_sym, Radd_assoc.
    apply (CReq_trans _ (CRplus R1 x 0)). 2: apply CRplus_0_r.
    destruct (CRisRingExt R1). apply Radd_ext.
    apply CReq_refl. apply Ropp_def.
    apply (CRplus_lt_reg_r (CRmorph f y)).
    apply (CRlt_le_trans _ _ _ abs). clear abs.
    apply (CRle_trans _ (CRplus R2 (CRmorph f (CRplus R1 x y)) 0)).
    destruct (CRplus_0_r (CRmorph f (CRplus R1 x y))). exact H.
    apply (CRle_trans _ (CRplus R2 (CRmorph f (CRplus R1 x y))
                                (CRplus R2 (CRmorph f (CRopp R1 y)) (CRmorph f y)))).
    apply CRplus_le_compat_l.
    apply (CRle_trans
             _ (CRplus R2 (CRopp R2 (CRmorph f y)) (CRmorph f y))).
    destruct (CRplus_opp_l (CRmorph f y)). exact H.
    apply CRplus_le_compat_r. destruct (CRmorph_opp f y). exact H.
    destruct (CRisRing R2).
    destruct (Radd_assoc (CRmorph f (CRplus R1 x y))
                         (CRmorph f (CRopp R1 y)) (CRmorph f y)).
    exact H0.
Qed.

Lemma CRmorph_mult_pos : forall {R1 R2 : ConstructiveReals}
                           (f : @ConstructiveRealsMorphism R1 R2)
                           (x : CRcarrier R1) (n : nat),
    CRmorph f (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1)))
    == CRmult R2 (CRmorph f x) (CR_of_Q R2 (Z.of_nat n # 1)).
Proof.
  induction n.
  - simpl. destruct (CRisRingExt R1).
    apply (CReq_trans _ 0).
    + apply (CReq_trans _ (CRmorph f 0)).
      2: apply CRmorph_zero. apply CRmorph_proper.
      apply (CReq_trans _ (CRmult R1 x 0)).
      2: apply CRmult_0_r. apply Rmul_ext. apply CReq_refl. reflexivity.
    + apply (CReq_trans _ (CRmult R2 (CRmorph f x) 0)).
      apply CReq_sym, CRmult_0_r. destruct (CRisRingExt R2).
      apply Rmul_ext0. apply CReq_refl. reflexivity.
  - destruct (CRisRingExt R1), (CRisRingExt R2).
    transitivity (CRmorph f (CRplus R1 x (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1))))).
    apply CRmorph_proper.
    transitivity (CRmult R1 x (CRplus R1 1 (CR_of_Q R1 (Z.of_nat n # 1)))).
    apply Rmul_ext. reflexivity.
    transitivity (CR_of_Q R1 (1 + (Z.of_nat n # 1))).
    apply CR_of_Q_morph. rewrite Nat2Z.inj_succ. unfold Z.succ.
    rewrite Z.add_comm. rewrite Qinv_plus_distr. reflexivity.
    rewrite CR_of_Q_plus. reflexivity.
    transitivity (CRplus R1 (CRmult R1 x 1)
                         (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1)))).
    apply CRmult_plus_distr_l. apply Radd_ext. apply CRmult_1_r. reflexivity.
    apply (CReq_trans
             _ (CRplus R2 (CRmorph f x)
                       (CRmorph f (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1)))))).
    apply CRmorph_plus.
    apply (CReq_trans
             _ (CRplus R2 (CRmorph f x)
                       (CRmult R2 (CRmorph f x) (CR_of_Q R2 (Z.of_nat n # 1))))).
    apply Radd_ext0. apply CReq_refl. exact IHn.
    apply (CReq_trans
             _ (CRmult R2 (CRmorph f x) (CRplus R2 1 (CR_of_Q R2 (Z.of_nat n # 1))))).
    apply (CReq_trans
             _ (CRplus R2 (CRmult R2 (CRmorph f x) 1)
                       (CRmult R2 (CRmorph f x) (CR_of_Q R2 (Z.of_nat n # 1))))).
    apply Radd_ext0. 2: apply CReq_refl. apply CReq_sym, CRmult_1_r.
    apply CReq_sym, CRmult_plus_distr_l.
    apply Rmul_ext0. apply CReq_refl.
    apply (CReq_trans _ (CR_of_Q R2 (1 + (Z.of_nat n # 1)))).
    apply (CReq_trans _ (CRplus R2 (CR_of_Q R2 1) (CR_of_Q R2 (Z.of_nat n # 1)))).
    apply Radd_ext0. reflexivity. reflexivity.
    apply CReq_sym, CR_of_Q_plus.
    apply CR_of_Q_morph. rewrite Nat2Z.inj_succ. unfold Z.succ.
    rewrite Z.add_comm. rewrite Qinv_plus_distr. reflexivity.
Qed.

Lemma NatOfZ : forall n : Z, { p : nat | n = Z.of_nat p \/ n = Z.opp (Z.of_nat p) }.
Proof.
  intros [|p|n].
  - exists O. left. reflexivity.
  - exists (Pos.to_nat p). left. rewrite positive_nat_Z. reflexivity.
  - exists (Pos.to_nat n). right. rewrite positive_nat_Z. reflexivity.
Qed.

Lemma CRmorph_mult_int : forall {R1 R2 : ConstructiveReals}
                           (f : @ConstructiveRealsMorphism R1 R2)
                           (x : CRcarrier R1) (n : Z),
    CRmorph f (CRmult R1 x (CR_of_Q R1 (n # 1)))
    == CRmult R2 (CRmorph f x) (CR_of_Q R2 (n # 1)).
Proof.
  intros. destruct (NatOfZ n) as [p [pos|neg]].
  - subst n. apply CRmorph_mult_pos.
  - subst n.
    apply (CReq_trans
             _ (CRopp R2 (CRmorph  f (CRmult R1 x (CR_of_Q R1 (Z.of_nat p # 1)))))).
    + apply (CReq_trans
               _ (CRmorph f (CRopp R1 (CRmult R1 x (CR_of_Q R1 (Z.of_nat p # 1)))))).
      2: apply CRmorph_opp. apply CRmorph_proper.
      apply (CReq_trans _ (CRmult R1 x (CR_of_Q R1 (- (Z.of_nat p # 1))))).
      destruct (CRisRingExt R1). apply Rmul_ext. apply CReq_refl.
      apply CR_of_Q_morph. reflexivity.
      apply (CReq_trans _ (CRmult R1 x (CRopp R1 (CR_of_Q R1 (Z.of_nat p # 1))))).
      destruct (CRisRingExt R1). apply Rmul_ext. apply CReq_refl.
      apply CR_of_Q_opp. apply CReq_sym, CRopp_mult_distr_r.
    + apply (CReq_trans
               _ (CRopp R2 (CRmult R2 (CRmorph f x) (CR_of_Q R2 (Z.of_nat p # 1))))).
      destruct (CRisRingExt R2). apply Ropp_ext. apply CRmorph_mult_pos.
      apply (CReq_trans
               _ (CRmult R2 (CRmorph f x) (CRopp R2 (CR_of_Q R2 (Z.of_nat p # 1))))).
      apply CRopp_mult_distr_r. destruct (CRisRingExt R2).
      apply Rmul_ext. apply CReq_refl.
      apply (CReq_trans _ (CR_of_Q R2 (- (Z.of_nat p # 1)))).
      apply CReq_sym, CR_of_Q_opp. apply CR_of_Q_morph. reflexivity.
Qed.

Lemma CRmorph_mult_inv : forall {R1 R2 : ConstructiveReals}
                           (f : @ConstructiveRealsMorphism R1 R2)
                           (x : CRcarrier R1) (p : positive),
    CRmorph f (CRmult R1 x (CR_of_Q R1 (1 # p)))
    == CRmult R2 (CRmorph f x) (CR_of_Q R2 (1 # p)).
Proof.
  intros. apply (CRmult_eq_reg_r (CR_of_Q R2 (Z.pos p # 1))).
  left. apply (CRle_lt_trans _ (CR_of_Q R2 0)).
  apply CRle_refl. apply CR_of_Q_lt. reflexivity.
  apply (CReq_trans _ (CRmorph f x)).
  - apply (CReq_trans
             _ (CRmorph f (CRmult R1 (CRmult R1 x (CR_of_Q R1 (1 # p)))
                                  (CR_of_Q R1 (Z.pos p # 1))))).
    apply CReq_sym, CRmorph_mult_int. apply CRmorph_proper.
    apply (CReq_trans
             _ (CRmult R1 x (CRmult R1 (CR_of_Q R1 (1 # p))
                                    (CR_of_Q R1 (Z.pos p # 1))))).
    destruct (CRisRing R1). apply CReq_sym, Rmul_assoc.
    apply (CReq_trans _ (CRmult R1 x 1)).
    apply (Rmul_ext (CRisRingExt R1)). apply CReq_refl.
    apply (CReq_trans _ (CR_of_Q R1 ((1#p) * (Z.pos p # 1)))).
    apply CReq_sym, CR_of_Q_mult.
    apply (CReq_trans _ (CR_of_Q R1 1)).
    apply CR_of_Q_morph. reflexivity. reflexivity.
    apply CRmult_1_r.
  - apply (CReq_trans
             _ (CRmult R2 (CRmorph f x)
                       (CRmult R2 (CR_of_Q R2 (1 # p)) (CR_of_Q R2 (Z.pos p # 1))))).
    2: apply (Rmul_assoc (CRisRing R2)).
    apply (CReq_trans _ (CRmult R2 (CRmorph f x) 1)).
    apply CReq_sym, CRmult_1_r.
    apply (Rmul_ext (CRisRingExt R2)). apply CReq_refl.
    apply (CReq_trans _ (CR_of_Q R2 1)).
    reflexivity.
    apply (CReq_trans _ (CR_of_Q R2 ((1#p)*(Z.pos p # 1)))).
    apply CR_of_Q_morph. reflexivity. apply CR_of_Q_mult.
Qed.

Lemma CRmorph_mult_rat : forall {R1 R2 : ConstructiveReals}
                           (f : @ConstructiveRealsMorphism R1 R2)
                           (x : CRcarrier R1) (q : Q),
    CRmorph f (CRmult R1 x (CR_of_Q R1 q))
    == CRmult R2 (CRmorph f x) (CR_of_Q R2 q).
Proof.
  intros. destruct q as [a b].
  apply (CReq_trans
           _ (CRmult R2 (CRmorph f (CRmult R1 x (CR_of_Q R1 (a # 1))))
                     (CR_of_Q R2 (1 # b)))).
  - apply (CReq_trans
             _ (CRmorph f (CRmult R1 (CRmult R1 x (CR_of_Q R1 (a # 1)))
                                  (CR_of_Q R1 (1 # b))))).
    2: apply CRmorph_mult_inv. apply CRmorph_proper.
    apply (CReq_trans
             _ (CRmult R1 x (CRmult R1 (CR_of_Q R1 (a # 1))
                                    (CR_of_Q R1 (1 # b))))).
    apply (Rmul_ext (CRisRingExt R1)). apply CReq_refl.
    apply (CReq_trans _ (CR_of_Q R1 ((a#1)*(1#b)))).
    apply CR_of_Q_morph. unfold Qeq; simpl. rewrite Z.mul_1_r. reflexivity.
    apply CR_of_Q_mult.
    apply (Rmul_assoc (CRisRing R1)).
  - apply (CReq_trans
             _ (CRmult R2 (CRmult R2 (CRmorph f x) (CR_of_Q R2 (a # 1)))
                       (CR_of_Q R2 (1 # b)))).
    apply (Rmul_ext (CRisRingExt R2)). apply CRmorph_mult_int.
    apply CReq_refl.
    apply (CReq_trans
             _ (CRmult R2 (CRmorph f x)
                       (CRmult R2 (CR_of_Q R2 (a # 1)) (CR_of_Q R2 (1 # b))))).
    apply CReq_sym, (Rmul_assoc (CRisRing R2)).
    apply (Rmul_ext (CRisRingExt R2)). apply CReq_refl.
    apply (CReq_trans _ (CR_of_Q R2 ((a#1)*(1#b)))).
    apply CReq_sym, CR_of_Q_mult.
    apply CR_of_Q_morph. unfold Qeq; simpl. rewrite Z.mul_1_r. reflexivity.
Qed.

Lemma CRmorph_mult_pos_pos_le : forall {R1 R2 : ConstructiveReals}
                                  (f : @ConstructiveRealsMorphism R1 R2)
                                  (x y : CRcarrier R1),
    CRlt R1 0 y
    -> CRmult R2 (CRmorph f x) (CRmorph f y)
       <= CRmorph f (CRmult R1 x y).
Proof.
  intros. intro abs. destruct (CR_Q_dense R2 _ _ abs) as [q [H1 H2]].
  destruct (CRmorph_rat f q) as [H3 _].
  apply (CRlt_le_trans _ _ _ H1) in H3. clear H1.
  apply CRmorph_increasing_inv in H3.
  apply (CRlt_asym _ _ H3). clear H3.
  destruct (CR_Q_dense R2 _ _ H2) as [r [H1 H3]].
  apply lt_CR_of_Q in H1.
  destruct (CR_archimedean R1 y) as [A Amaj].
  assert (/ ((r - q) * (1 # A)) * (q - r) == - (Z.pos A # 1))%Q as diveq.
  { rewrite Qinv_mult_distr. setoid_replace (q-r)%Q with (-1*(r-q))%Q.
    field_simplify. reflexivity. 2: field.
    split. intro H4. inversion H4. intro H4.
    apply Qlt_minus_iff in H1. rewrite H4 in H1. inversion H1. }
  destruct (CR_Q_dense R1 (CRplus R1 x (CR_of_Q R1 ((q-r) * (1#A)))) x)
    as [s [H4 H5]].
  - apply (CRlt_le_trans _ (CRplus R1 x 0)).
    2: apply CRplus_0_r. apply CRplus_lt_compat_l.
    apply (CRplus_lt_reg_l R1 (CR_of_Q R1 ((r-q) * (1#A)))).
    apply (CRle_lt_trans _ 0).
    apply (CRle_trans _ (CR_of_Q R1 ((r-q)*(1#A) + (q-r)*(1#A)))).
    destruct (CR_of_Q_plus R1 ((r-q)*(1#A)) ((q-r)*(1#A))).
    exact H0. apply (CRle_trans _ (CR_of_Q R1 0)).
    2: apply CRle_refl.
    intro H4. apply lt_CR_of_Q in H4. ring_simplify in H4.
    inversion H4.
    apply (CRlt_le_trans _ (CR_of_Q R1 ((r - q) * (1 # A)))).
    2: apply CRplus_0_r.
    apply (CRle_lt_trans _ (CR_of_Q R1 0)).
    apply CRle_refl. apply CR_of_Q_lt.
    rewrite <- (Qmult_0_r (r-q)). apply Qmult_lt_l.
    apply Qlt_minus_iff in H1. exact H1. reflexivity.
  - apply (CRmorph_increasing f) in H4.
    destruct (CRmorph_plus f x (CR_of_Q R1 ((q-r) * (1#A)))) as [H6 _].
    apply (CRle_lt_trans _ _ _ H6) in H4. clear H6.
    destruct (CRmorph_rat f s) as [_ H6].
    apply (CRlt_le_trans _ _ _ H4) in H6. clear H4.
    apply (CRmult_lt_compat_r (CRmorph f y)) in H6.
    destruct (Rdistr_l (CRisRing R2) (CRmorph f x)
                       (CRmorph f (CR_of_Q R1 ((q-r) * (1#A))))
                       (CRmorph f y)) as [H4 _].
    apply (CRle_lt_trans _ _ _ H4) in H6. clear H4.
    apply (CRle_lt_trans _ (CRmult R1 (CR_of_Q R1 s) y)).
    2: apply CRmult_lt_compat_r. 2: exact H. 2: exact H5.
    apply (CRmorph_le_inv f).
    apply (CRle_trans _ (CR_of_Q R2 q)).
    destruct (CRmorph_rat f q). exact H4.
    apply (CRle_trans _ (CRmult R2 (CR_of_Q R2 s) (CRmorph f y))).
    apply (CRle_trans _ (CRplus R2 (CRmult R2 (CRmorph f x) (CRmorph f y))
                                   (CR_of_Q R2 (q-r)))).
    apply (CRle_trans _ (CRplus R2 (CR_of_Q R2 r) (CR_of_Q R2 (q - r)))).
    + apply (CRle_trans _ (CR_of_Q R2 (r + (q-r)))).
      intro H4. apply lt_CR_of_Q in H4. ring_simplify in H4.
      exact (Qlt_not_le q q H4 (Qle_refl q)).
      destruct (CR_of_Q_plus R2 r (q-r)). exact H4.
    + apply CRplus_le_compat_r. intro H4.
      apply (CRlt_asym _ _ H3). exact H4.
    + intro H4. apply (CRlt_asym _ _ H4). clear H4.
      apply (CRlt_trans_flip _ _ _ H6). clear H6.
      apply CRplus_lt_compat_l.
      apply (CRlt_le_trans
               _ (CRmult R2 (CR_of_Q R2 ((q - r) * (1 # A))) (CRmorph f y))).
      apply (CRmult_lt_reg_l (CR_of_Q R2 (/((r-q)*(1#A))))).
      apply (CRle_lt_trans _ (CR_of_Q R2 0)). apply CRle_refl.
      apply CR_of_Q_lt, Qinv_lt_0_compat.
      rewrite <- (Qmult_0_r (r-q)). apply Qmult_lt_l.
      apply Qlt_minus_iff in H1. exact H1. reflexivity.
      apply (CRle_lt_trans _ (CRopp R2 (CR_of_Q R2 (Z.pos A # 1)))).
      apply (CRle_trans _ (CR_of_Q R2 (-(Z.pos A # 1)))).
      apply (CRle_trans _ (CR_of_Q R2 ((/ ((r - q) * (1 # A))) * (q - r)))).
      destruct (CR_of_Q_mult R2 (/ ((r - q) * (1 # A))) (q - r)).
      exact H0. destruct (CR_of_Q_morph R2 (/ ((r - q) * (1 # A)) * (q - r))
                                         (-(Z.pos A # 1))).
      exact diveq. intro H7. apply lt_CR_of_Q in H7.
      rewrite diveq in H7. exact (Qlt_not_le _ _ H7 (Qle_refl _)).
      destruct (@CR_of_Q_opp R2 (Z.pos A # 1)). exact H4.
      apply (CRlt_le_trans _ (CRopp R2 (CRmorph f y))).
      apply CRopp_gt_lt_contravar.
      apply (CRlt_le_trans _ (CRmorph f (CR_of_Q R1 (Z.pos A # 1)))).
      apply CRmorph_increasing. exact Amaj.
      destruct (CRmorph_rat f (Z.pos A # 1)). exact H4.
      apply (CRle_trans _ (CRmult R2 (CRopp R2 1) (CRmorph f y))).
      apply (CRle_trans _ (CRopp R2 (CRmult R2 1 (CRmorph f y)))).
      destruct (Ropp_ext (CRisRingExt R2) (CRmorph f y)
                         (CRmult R2 1 (CRmorph f y))).
      apply CReq_sym, (Rmul_1_l (CRisRing R2)). exact H4.
      destruct (CRopp_mult_distr_l 1 (CRmorph f y)). exact H4.
      apply (CRle_trans _ (CRmult R2 (CRmult R2 (CR_of_Q R2 (/ ((r - q) * (1 # A))))
                                             (CR_of_Q R2 ((q - r) * (1 # A))))
                                  (CRmorph f y))).
      apply CRmult_le_compat_r_half.
      apply (CRle_lt_trans _ (CRmorph f 0)).
      apply CRmorph_zero. apply CRmorph_increasing. exact H.
      apply (CRle_trans _ (CR_of_Q R2 ((/ ((r - q) * (1 # A)))
                                       * ((q - r) * (1 # A))))).
      apply (CRle_trans _ (CR_of_Q R2 (-1))).
      apply (CRle_trans _ (CRopp R2 (CR_of_Q R2 1))).
      destruct (Ropp_ext (CRisRingExt R2) 1 (CR_of_Q R2 1)).
      reflexivity. exact H4.
      destruct (@CR_of_Q_opp R2 1). exact H0.
      destruct (CR_of_Q_morph R2 (-1) (/ ((r - q) * (1 # A)) * ((q - r) * (1 # A)))).
      field. split.
      intro H4. inversion H4. intro H4. apply Qlt_minus_iff in H1.
      rewrite H4 in H1. inversion H1. exact H4.
      destruct (CR_of_Q_mult R2 (/ ((r - q) * (1 # A))) ((q - r) * (1 # A))).
      exact H4.
      destruct (Rmul_assoc (CRisRing R2) (CR_of_Q R2 (/ ((r - q) * (1 # A))))
                           (CR_of_Q R2 ((q - r) * (1 # A)))
                           (CRmorph f y)).
      exact H0.
      apply CRmult_le_compat_r_half.
      apply (CRle_lt_trans _ (CRmorph f 0)).
      apply CRmorph_zero. apply CRmorph_increasing. exact H.
      destruct (CRmorph_rat f ((q - r) * (1 # A))). exact H0.
    + apply (CRle_trans _ (CRmorph f (CRmult R1 y (CR_of_Q R1 s)))).
      apply (CRle_trans _ (CRmult R2 (CRmorph f y) (CR_of_Q R2 s))).
      destruct (Rmul_comm (CRisRing R2) (CRmorph f y) (CR_of_Q R2 s)).
      exact H0.
      destruct (CRmorph_mult_rat f y s). exact H0.
      destruct (CRmorph_proper f (CRmult R1 y (CR_of_Q R1 s))
                               (CRmult R1 (CR_of_Q R1 s) y)).
      apply (Rmul_comm (CRisRing R1)). exact H4.
    + apply (CRle_lt_trans _ (CRmorph f 0)).
      apply CRmorph_zero. apply CRmorph_increasing. exact H.
Qed.

Lemma CRmorph_mult_pos_pos : forall {R1 R2 : ConstructiveReals}
                               (f : @ConstructiveRealsMorphism R1 R2)
                               (x y : CRcarrier R1),
    CRlt R1 0 y
    -> CRmorph f (CRmult R1 x y)
       == CRmult R2 (CRmorph f x) (CRmorph f y).
Proof.
  split. apply CRmorph_mult_pos_pos_le. exact H.
  intro abs. destruct (CR_Q_dense R2 _ _ abs) as [q [H1 H2]].
  destruct (CRmorph_rat f q) as [_ H3].
  apply (CRle_lt_trans _ _ _ H3) in H2. clear H3.
  apply CRmorph_increasing_inv in H2.
  apply (CRlt_asym _ _ H2). clear H2.
  destruct (CR_Q_dense R2 _ _ H1) as [r [H2 H3]].
  apply lt_CR_of_Q in H3.
  destruct (CR_archimedean R1 y) as [A Amaj].
  destruct (CR_Q_dense R1 x (CRplus R1 x (CR_of_Q R1 ((q-r) * (1#A)))))
    as [s [H4 H5]].
  - apply (CRle_lt_trans _ (CRplus R1 x 0)).
    apply CRplus_0_r. apply CRplus_lt_compat_l.
    apply (CRle_lt_trans _ (CR_of_Q R1 0)).
    apply CRle_refl. apply CR_of_Q_lt.
    rewrite <- (Qmult_0_r (q-r)). apply Qmult_lt_l.
    apply Qlt_minus_iff in H3. exact H3. reflexivity.
  - apply (CRmorph_increasing f) in H5.
    destruct (CRmorph_plus f x (CR_of_Q R1 ((q-r) * (1#A)))) as [_ H6].
    apply (CRlt_le_trans _ _ _ H5) in H6. clear H5.
    destruct (CRmorph_rat f s) as [H5 _ ].
    apply (CRle_lt_trans _ _ _ H5) in H6. clear H5.
    apply (CRmult_lt_compat_r (CRmorph f y)) in H6.
    apply (CRlt_le_trans _ (CRmult R1 (CR_of_Q R1 s) y)).
    apply CRmult_lt_compat_r. exact H. exact H4. clear H4.
    apply (CRmorph_le_inv f).
    apply (CRle_trans _ (CR_of_Q R2 q)).
    2: destruct (CRmorph_rat f q); exact H0.
    apply (CRle_trans _ (CRmult R2 (CR_of_Q R2 s) (CRmorph f y))).
    + apply (CRle_trans _ (CRmorph f (CRmult R1 y (CR_of_Q R1 s)))).
      destruct (CRmorph_proper f (CRmult R1 (CR_of_Q R1 s) y)
                               (CRmult R1 y (CR_of_Q R1 s))).
      apply (Rmul_comm (CRisRing R1)). exact H4.
      apply (CRle_trans _ (CRmult R2 (CRmorph f y) (CR_of_Q R2 s))).
      exact (proj2 (CRmorph_mult_rat f y s)).
      destruct (Rmul_comm (CRisRing R2) (CR_of_Q R2 s) (CRmorph f y)).
      exact H0.
    + intro H5. apply (CRlt_asym _ _ H5). clear H5.
      apply (CRlt_trans _ _ _ H6). clear H6.
      apply (CRle_lt_trans
               _ (CRplus R2
                         (CRmult R2 (CRmorph f x) (CRmorph f y))
                         (CRmult R2 (CRmorph f (CR_of_Q R1 ((q - r) * (1 # A))))
                                 (CRmorph f y)))).
      apply (Rdistr_l (CRisRing R2)).
      apply (CRle_lt_trans
               _ (CRplus R2 (CR_of_Q R2 r)
                         (CRmult R2 (CRmorph f (CR_of_Q R1 ((q - r) * (1 # A))))
                                 (CRmorph f y)))).
      apply CRplus_le_compat_r. intro H5. apply (CRlt_asym _ _ H5 H2).
      clear H2.
      apply (CRle_lt_trans
               _ (CRplus R2 (CR_of_Q R2 r)
                         (CRmult R2 (CR_of_Q R2 ((q - r) * (1 # A)))
                                 (CRmorph f y)))).
      apply CRplus_le_compat_l, CRmult_le_compat_r_half.
      apply (CRle_lt_trans _ (CRmorph f 0)).
      apply CRmorph_zero. apply CRmorph_increasing. exact H.
      destruct (CRmorph_rat f ((q - r) * (1 # A))). exact H2.
      apply (CRlt_le_trans _ (CRplus R2 (CR_of_Q R2 r)
                                     (CR_of_Q R2 ((q - r))))).
      apply CRplus_lt_compat_l.
      * apply (CRmult_lt_reg_l (CR_of_Q R2 (/((q - r) * (1 # A))))).
        apply (CRle_lt_trans _ (CR_of_Q R2 0)). apply CRle_refl.
        apply CR_of_Q_lt, Qinv_lt_0_compat.
        rewrite <- (Qmult_0_r (q-r)). apply Qmult_lt_l.
        apply Qlt_minus_iff in H3. exact H3. reflexivity.
        apply (CRle_lt_trans _ (CRmorph f y)).
        apply (CRle_trans _ (CRmult R2 (CRmult R2 (CR_of_Q R2 (/ ((q - r) * (1 # A))))
                                               (CR_of_Q R2 ((q - r) * (1 # A))))
                                    (CRmorph f y))).
        exact (proj2 (Rmul_assoc (CRisRing R2) (CR_of_Q R2 (/ ((q - r) * (1 # A))))
                                 (CR_of_Q R2 ((q - r) * (1 # A)))
                                 (CRmorph f y))).
        apply (CRle_trans _ (CRmult R2 1 (CRmorph f y))).
        apply CRmult_le_compat_r_half.
        apply (CRle_lt_trans _ (CRmorph f 0)).
        apply CRmorph_zero. apply CRmorph_increasing. exact H.
        apply (CRle_trans
                 _ (CR_of_Q R2 ((/ ((q - r) * (1 # A))) * ((q - r) * (1 # A))))).
        exact (proj1 (CR_of_Q_mult R2 (/ ((q - r) * (1 # A))) ((q - r) * (1 # A)))).
        apply (CRle_trans _ (CR_of_Q R2 1)).
        destruct (CR_of_Q_morph R2 (/ ((q - r) * (1 # A)) * ((q - r) * (1 # A))) 1).
        field_simplify. reflexivity. split.
        intro H5. inversion H5. intro H5. apply Qlt_minus_iff in H3.
        rewrite H5 in H3. inversion H3. exact H2.
        apply CRle_refl.
        destruct (Rmul_1_l (CRisRing R2) (CRmorph f y)).
        intro H5. contradiction.
        apply (CRlt_le_trans _ (CR_of_Q R2 (Z.pos A # 1))).
        apply (CRlt_le_trans _ (CRmorph f (CR_of_Q R1 (Z.pos A # 1)))).
        apply CRmorph_increasing. exact Amaj.
        exact (proj2 (CRmorph_rat f (Z.pos A # 1))).
        apply (CRle_trans _ (CR_of_Q R2 ((/ ((q - r) * (1 # A))) * (q - r)))).
        2: exact (proj2 (CR_of_Q_mult R2 (/ ((q - r) * (1 # A))) (q - r))).
        destruct (CR_of_Q_morph R2 (Z.pos A # 1) (/ ((q - r) * (1 # A)) * (q - r))).
        field_simplify. reflexivity. split.
        intro H5. inversion H5. intro H5. apply Qlt_minus_iff in H3.
        rewrite H5 in H3. inversion H3. exact H2.
      * apply (CRle_trans _ (CR_of_Q R2 (r + (q-r)))).
        exact (proj1 (CR_of_Q_plus R2 r (q-r))).
        destruct (CR_of_Q_morph R2 (r + (q-r)) q). ring. exact H2.
    + apply (CRle_lt_trans _ (CRmorph f 0)).
      apply CRmorph_zero. apply CRmorph_increasing. exact H.
Qed.

Lemma CRmorph_mult : forall {R1 R2 : ConstructiveReals}
                       (f : @ConstructiveRealsMorphism R1 R2)
                       (x y : CRcarrier R1),
    CRmorph f (CRmult R1 x y)
    == CRmult R2 (CRmorph f x) (CRmorph f y).
Proof.
  intros.
  destruct (CR_archimedean R1 (CRopp R1 y)) as [p pmaj].
  apply (CRplus_eq_reg_r (CRmult R2 (CRmorph f x)
                                    (CR_of_Q R2 (Z.pos p # 1)))).
  apply (CReq_trans _ (CRmorph f (CRmult R1 x (CRplus R1 y (CR_of_Q R1 (Z.pos p # 1)))))).
  - apply (CReq_trans _ (CRplus R2 (CRmorph f (CRmult R1 x y))
                                (CRmorph f (CRmult R1 x (CR_of_Q R1 (Z.pos p # 1)))))).
    apply (Radd_ext (CRisRingExt R2)). apply CReq_refl.
    apply CReq_sym, CRmorph_mult_int.
    apply (CReq_trans _ (CRmorph f (CRplus R1 (CRmult R1 x y)
                                           (CRmult R1 x (CR_of_Q R1 (Z.pos p # 1)))))).
    apply CReq_sym, CRmorph_plus. apply CRmorph_proper.
    apply CReq_sym, CRmult_plus_distr_l.
  - apply (CReq_trans _ (CRmult R2 (CRmorph f x)
                                (CRmorph f (CRplus R1 y (CR_of_Q R1 (Z.pos p # 1)))))).
    apply CRmorph_mult_pos_pos.
    apply (CRplus_lt_compat_l R1 y) in pmaj.
    apply (CRle_lt_trans _ (CRplus R1 y (CRopp R1 y))).
    2: exact pmaj. apply (CRisRing R1).
    apply (CReq_trans _ (CRmult R2 (CRmorph f x)
                                (CRplus R2 (CRmorph f y) (CR_of_Q R2 (Z.pos p # 1))))).
    apply (Rmul_ext (CRisRingExt R2)). apply CReq_refl.
    apply (CReq_trans _ (CRplus R2 (CRmorph f y)
                                (CRmorph f (CR_of_Q R1 (Z.pos p # 1))))).
    apply CRmorph_plus.
    apply (Radd_ext (CRisRingExt R2)). apply CReq_refl.
    apply CRmorph_rat.
    apply CRmult_plus_distr_l.
Qed.

Lemma CRmorph_appart : forall {R1 R2 : ConstructiveReals}
                         (f : @ConstructiveRealsMorphism R1 R2)
                         (x y : CRcarrier R1)
                         (app : x ≶ y),
    CRmorph f x ≶ CRmorph f y.
Proof.
  intros. destruct app.
  - left. apply CRmorph_increasing. exact c.
  - right. apply CRmorph_increasing. exact c.
Defined.

Lemma CRmorph_appart_zero : forall {R1 R2 : ConstructiveReals}
                              (f : @ConstructiveRealsMorphism R1 R2)
                              (x : CRcarrier R1)
                              (app : x ≶ 0),
    CRmorph f x ≶ 0.
Proof.
  intros. destruct app.
  - left. apply (CRlt_le_trans _ (CRmorph f 0)).
    apply CRmorph_increasing. exact c.
    exact (proj2 (CRmorph_zero f)).
  - right. apply (CRle_lt_trans  _ (CRmorph f 0)).
    exact (proj1 (CRmorph_zero f)).
    apply CRmorph_increasing. exact c.
Defined.

Lemma CRmorph_inv : forall {R1 R2 : ConstructiveReals}
                      (f : @ConstructiveRealsMorphism R1 R2)
                      (x : CRcarrier R1)
                      (xnz : x ≶ 0)
                      (fxnz : CRmorph f x ≶ 0),
    CRmorph f ((/ x) xnz)
    == (/ CRmorph f x) fxnz.
Proof.
  intros. apply (CRmult_eq_reg_r (CRmorph f x)).
  destruct fxnz. right. exact c. left. exact c.
  apply (CReq_trans _ 1).
  2: apply CReq_sym, CRinv_l.
  apply (CReq_trans _ (CRmorph f (CRmult R1 ((/ x) xnz) x))).
  apply CReq_sym, CRmorph_mult.
  apply (CReq_trans _ (CRmorph f 1)).
  apply CRmorph_proper. apply CRinv_l.
  apply CRmorph_one.
Qed.

Lemma CRmorph_rat_cv
  : forall {R1 R2 : ConstructiveReals}
           (qn : nat -> Q),
  CR_cauchy R1 (fun n => CR_of_Q R1 (qn n))
  -> CR_cauchy R2 (fun n => CR_of_Q R2 (qn n)).
Proof.
  intros. intro p. destruct (H p) as [n nmaj].
  exists n. intros. specialize (nmaj i j H0 H1).
  unfold CRminus. rewrite <- CR_of_Q_opp, <- CR_of_Q_plus, CR_of_Q_abs.
  unfold CRminus in nmaj. rewrite <- CR_of_Q_opp, <- CR_of_Q_plus, CR_of_Q_abs in nmaj.
  apply CR_of_Q_le. destruct (Q_dec (Qabs (qn i + - qn j)) (1#p)).
  destruct s. apply Qlt_le_weak, q. exfalso.
  apply (Qlt_not_le _ _ q). apply (CR_of_Q_lt R1) in q. contradiction.
  rewrite q. apply Qle_refl.
Qed.

Definition CR_Q_limit {R : ConstructiveReals} (x : CRcarrier R) (n:nat)
  : { q:Q  &  x < CR_of_Q R q < x + CR_of_Q R (1 # Pos.of_nat n) }.
Proof.
  apply (CR_Q_dense R x (x + CR_of_Q R (1 # Pos.of_nat n))).
  rewrite <- (CRplus_0_r x). rewrite CRplus_assoc.
  apply CRplus_lt_compat_l. rewrite CRplus_0_l. apply CR_of_Q_pos.
  reflexivity.
Qed.

Lemma CR_Q_limit_cv : forall {R : ConstructiveReals} (x : CRcarrier R),
    CR_cv R (fun n => CR_of_Q R (let (q,_) := CR_Q_limit x n in q)) x.
Proof.
  intros R x p. exists (Pos.to_nat p).
  intros. destruct (CR_Q_limit x i). rewrite CRabs_right.
  apply (CRplus_le_reg_r x). unfold CRminus.
  rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r, CRplus_comm.
  apply (CRle_trans _ (x + CR_of_Q R (1 # Pos.of_nat i))).
  apply CRlt_asym, p0. apply CRplus_le_compat_l, CR_of_Q_le.
  unfold Qle, Qnum, Qden. rewrite Z.mul_1_l, Z.mul_1_l.
  apply Pos2Z.pos_le_pos, Pos2Nat.inj_le. rewrite Nat2Pos.id. exact H.
  destruct i. exfalso. inversion H. pose proof (Pos2Nat.is_pos p).
  rewrite H1 in H0. inversion H0. discriminate.
  rewrite <- (CRplus_opp_r x). apply CRplus_le_compat_r, CRlt_asym, p0.
Qed.

(* We call this morphism slow to remind that it should only be used
   for proofs, not for computations. *)
Definition SlowMorph {R1 R2 : ConstructiveReals}
  : CRcarrier R1 -> CRcarrier R2
  := fun x => let (y,_) := CR_complete R2 _ (CRmorph_rat_cv _ (Rcv_cauchy_mod _ x (CR_Q_limit_cv x)))
              in y.

Lemma CauchyMorph_rat : forall {R1 R2 : ConstructiveReals} (q : Q),
    SlowMorph (CR_of_Q R1 q) == CR_of_Q R2 q.
Proof.
  intros. unfold SlowMorph.
  destruct (CR_complete R2 _
       (CRmorph_rat_cv _
          (Rcv_cauchy_mod
             (fun n : nat => CR_of_Q R1 (let (q0, _) := CR_Q_limit (CR_of_Q R1 q) n in q0))
             (CR_of_Q R1 q) (CR_Q_limit_cv (CR_of_Q R1 q))))).
  apply (CR_cv_unique _ _ _ c).
  intro p. exists (Pos.to_nat p). intros.
  destruct (CR_Q_limit (CR_of_Q R1 q) i). rewrite CRabs_right.
  apply (CRplus_le_reg_r (CR_of_Q R2 q)). unfold CRminus.
  rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r, CRplus_comm.
  rewrite <- CR_of_Q_plus. apply CR_of_Q_le.
  destruct (Q_dec x0 (q + (1 # p))%Q). destruct s.
  apply Qlt_le_weak, q0. exfalso. pose proof (CR_of_Q_lt R1 _ _ q0).
  apply (CRlt_asym _ _ H0). apply (CRlt_le_trans _ _ _ (snd p0)). clear H0.
  rewrite <- CR_of_Q_plus. apply CR_of_Q_le. apply Qplus_le_r.
  unfold Qle, Qnum, Qden. rewrite Z.mul_1_l, Z.mul_1_l.
  apply Pos2Z.pos_le_pos, Pos2Nat.inj_le. rewrite Nat2Pos.id. exact H.
  destruct i. exfalso. inversion H. pose proof (Pos2Nat.is_pos p).
  rewrite H1 in H0. inversion H0. discriminate.
  rewrite q0. apply Qle_refl.
  rewrite <- (CRplus_opp_r (CR_of_Q R2 q)). apply CRplus_le_compat_r, CR_of_Q_le.
  destruct (Q_dec q x0). destruct s. apply Qlt_le_weak, q0.
  exfalso. apply (CRlt_asym _ _ (fst p0)). apply CR_of_Q_lt. exact q0.
  rewrite q0. apply Qle_refl.
Qed.

(* The increasing property of morphisms, when the left bound is rational. *)
Lemma SlowMorph_increasing_Qr
  : forall {R1 R2 : ConstructiveReals} (x : CRcarrier R1) (q : Q),
    CR_of_Q R1 q < x -> CR_of_Q R2 q < SlowMorph x.
Proof.
  intros.
  unfold SlowMorph;
  destruct (CR_complete R2 _
       (CRmorph_rat_cv _
          (Rcv_cauchy_mod (fun n : nat => CR_of_Q R1 (let (q0, _) := CR_Q_limit x n in q0)) x
             (CR_Q_limit_cv x)))).
  destruct (CR_Q_dense R1 _ _ H) as [r [H0 H1]].
  apply lt_CR_of_Q in H0.
  apply (CRlt_le_trans _ (CR_of_Q R2 r)).
  apply CR_of_Q_lt, H0.
  assert (forall n:nat, le O n -> CR_of_Q R2 r <= CR_of_Q R2 (let (q0, _) := CR_Q_limit x n in q0)).
  { intros. apply CR_of_Q_le. destruct (CR_Q_limit x n).
    destruct (Q_dec r x1). destruct s. apply Qlt_le_weak, q0.
    exfalso. apply (CR_of_Q_lt R1) in q0.
    apply (CRlt_asym _ _ q0). exact (CRlt_trans _ _ _ H1 (fst p)).
    rewrite q0. apply Qle_refl. }
  exact (CR_cv_bound_down _ _ _ O H2 c).
Qed.

(* The increasing property of morphisms, when the right bound is rational. *)
Lemma SlowMorph_increasing_Ql
  : forall {R1 R2 : ConstructiveReals} (x : CRcarrier R1) (q : Q),
    x < CR_of_Q R1 q -> SlowMorph x < CR_of_Q R2 q.
Proof.
  intros.
  unfold SlowMorph;
  destruct (CR_complete R2 _
       (CRmorph_rat_cv _
          (Rcv_cauchy_mod (fun n : nat => CR_of_Q R1 (let (q0, _) := CR_Q_limit x n in q0)) x
             (CR_Q_limit_cv x)))).
  assert (CR_cv R1 (fun n => CR_of_Q R1 (let (q0, _) := CR_Q_limit x n in q0)
                             + CR_of_Q R1 (1 # Pos.of_nat n)) x).
  { apply (CR_cv_proper _ (x+0)). apply CR_cv_plus. apply CR_Q_limit_cv.
    intro p. exists (Pos.to_nat p). intros.
    unfold CRminus. rewrite CRopp_0, CRplus_0_r. rewrite CRabs_right.
    apply CR_of_Q_le. unfold Qle, Qnum, Qden. do 2 rewrite Z.mul_1_l.
    apply Pos2Z.pos_le_pos, Pos2Nat.inj_le. rewrite Nat2Pos.id. exact H0.
    destruct i. inversion H0. pose proof (Pos2Nat.is_pos p).
    rewrite H2 in H1. inversion H1. discriminate.
    apply CR_of_Q_le. discriminate.
    rewrite CRplus_0_r. reflexivity. }
  pose proof (CR_cv_open_above _ _ _ H0 H) as [n nmaj].
  apply (CRle_lt_trans _ (CR_of_Q R2 (let (q0, _) := CR_Q_limit x n in
                                      q0 + (1 # Pos.of_nat n)))).
  - apply (CR_cv_bound_up (fun n : nat => CR_of_Q R2 (let (q0, _) := CR_Q_limit x n in q0)) _ _ n).
    2: exact c. intros. destruct (CR_Q_limit x n0), (CR_Q_limit x n).
    apply CR_of_Q_le, Qlt_le_weak. apply (lt_CR_of_Q R1).
    apply (CRlt_le_trans _ _ _ (snd p)).
    apply (CRle_trans _ (CR_of_Q R1 x2 + CR_of_Q R1 (1 # Pos.of_nat n0))).
    apply CRplus_le_compat_r. apply CRlt_asym, p0.
    rewrite <- CR_of_Q_plus. apply CR_of_Q_le. apply Qplus_le_r.
    unfold Qle, Qnum, Qden. do 2 rewrite Z.mul_1_l.
    apply Pos2Z.pos_le_pos, Pos2Nat.inj_le.
    destruct n. destruct n0. apply Nat.le_refl.
    rewrite (Nat2Pos.id (S n0)). apply -> Nat.succ_le_mono; apply Nat.le_0_l. discriminate.
    destruct n0. exfalso; inversion H1.
    rewrite Nat2Pos.id, Nat2Pos.id. exact H1. discriminate. discriminate.
  - specialize (nmaj n (Nat.le_refl n)).
    destruct (CR_Q_limit x n). apply CR_of_Q_lt.
    rewrite <- CR_of_Q_plus in nmaj. apply lt_CR_of_Q in nmaj. exact nmaj.
Qed.

Lemma SlowMorph_increasing : forall {R1 R2 : ConstructiveReals} (x y : CRcarrier R1),
    x < y -> @SlowMorph R1 R2 x < SlowMorph y.
Proof.
  intros.
  destruct (CR_Q_dense R1 _ _ H) as [q [H0 H1]].
  apply (CRlt_trans _ (CR_of_Q R2 q)).
  apply SlowMorph_increasing_Ql. exact H0.
  apply SlowMorph_increasing_Qr. exact H1.
Qed.


(* We call this morphism slow to remind that it should only be used
   for proofs, not for computations. *)
Definition SlowConstructiveRealsMorphism {R1 R2 : ConstructiveReals}
  : @ConstructiveRealsMorphism R1 R2
  := Build_ConstructiveRealsMorphism
       R1 R2 SlowMorph CauchyMorph_rat
       SlowMorph_increasing.

Lemma CRmorph_abs : forall {R1 R2 : ConstructiveReals}
                      (f : @ConstructiveRealsMorphism R1 R2)
                      (x : CRcarrier R1),
    CRabs R2 (CRmorph f x) == CRmorph f (CRabs R1 x).
Proof.
  assert (forall {R1 R2 : ConstructiveReals}
            (f : @ConstructiveRealsMorphism R1 R2)
            (x : CRcarrier R1),
             CRabs R2 (CRmorph f x) <= CRmorph f (CRabs R1 x)).
  { intros. rewrite <- CRabs_def. split.
    - apply CRmorph_le.
      pose proof (CRabs_def _ x (CRabs R1 x)) as [_ H].
      apply H, CRle_refl.
    - apply (CRle_trans _ (CRmorph f (CRopp R1 x))).
      apply CRmorph_opp. apply CRmorph_le.
      pose proof (CRabs_def _ x (CRabs R1 x)) as [_ H].
      apply H, CRle_refl. }
  intros. split. 2: apply H.
  apply (CRmorph_le_inv (@SlowConstructiveRealsMorphism R2 R1)).
  apply (CRle_trans _ (CRabs R1 x)).
  apply (Endomorph_id
           (CRmorph_compose f (@SlowConstructiveRealsMorphism R2 R1))).
  apply (CRle_trans
           _ (CRabs R1 (CRmorph (@SlowConstructiveRealsMorphism R2 R1) (CRmorph f x)))).
  apply CRabs_morph.
  apply CReq_sym, (Endomorph_id
                      (CRmorph_compose f (@SlowConstructiveRealsMorphism R2 R1))).
  apply H.
Qed.

Lemma CRmorph_cv : forall {R1 R2 : ConstructiveReals}
                     (f : @ConstructiveRealsMorphism R1 R2)
                     (un : nat -> CRcarrier R1)
                     (l : CRcarrier R1),
    CR_cv R1 un l
    -> CR_cv R2 (fun n => CRmorph f (un n)) (CRmorph f l).
Proof.
  intros. intro p. specialize (H p) as [n H].
  exists n. intros. specialize (H i H0).
  unfold CRminus. rewrite <- CRmorph_opp, <- CRmorph_plus, CRmorph_abs.
  rewrite <- (CRmorph_rat f (1#p)). apply CRmorph_le. exact H.
Qed.

Lemma CRmorph_cauchy_reverse : forall {R1 R2 : ConstructiveReals}
                     (f : @ConstructiveRealsMorphism R1 R2)
                     (un : nat -> CRcarrier R1),
    CR_cauchy R2 (fun n => CRmorph f (un n))
    -> CR_cauchy R1 un.
Proof.
  intros. intro p. specialize (H p) as [n H].
  exists n. intros. specialize (H i j H0 H1).
  unfold CRminus in H. rewrite <- CRmorph_opp, <- CRmorph_plus, CRmorph_abs in H.
  rewrite <- (CRmorph_rat f (1#p)) in H.
  apply (CRmorph_le_inv f) in H. exact H.
Qed.