1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import PartSum.
Local Open Scope R_scope.
Definition C (n p:nat) : R :=
INR (fact n) / (INR (fact p) * INR (fact (n - p))).
Lemma pascal_step1 : forall n i:nat, (i <= n)%nat -> C n i = C n (n - i).
Proof.
intros; unfold C; replace (n - (n - i))%nat with i.
rewrite Rmult_comm.
reflexivity.
symmetry; apply Nat.add_sub_eq_l, Nat.sub_add; assumption.
Qed.
Lemma pascal_step2 :
forall n i:nat,
(i <= n)%nat -> C (S n) i = INR (S n) / INR (S n - i) * C n i.
Proof.
intros; unfold C; replace (S n - i)%nat with (S (n - i)).
cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
intro; repeat rewrite H0.
unfold Rdiv; repeat rewrite mult_INR; repeat rewrite Rinv_mult.
ring.
intro; reflexivity.
symmetry; apply Nat.sub_succ_l; assumption.
Qed.
Lemma pascal_step3 :
forall n i:nat, (i < n)%nat -> C n (S i) = INR (n - i) / INR (S i) * C n i.
Proof.
intros; unfold C.
cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
intro.
cut ((n - i)%nat = S (n - S i)).
intro.
pattern (n - i)%nat at 2; rewrite H1.
repeat rewrite H0; unfold Rdiv; repeat rewrite mult_INR;
repeat rewrite Rinv_mult.
rewrite <- H1; rewrite (Rmult_comm (/ INR (n - i)));
repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (n - i)));
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
ring.
apply not_O_INR; apply minus_neq_O; assumption.
rewrite <- Nat.sub_succ_l.
simpl; reflexivity.
apply -> Nat.le_succ_l; assumption.
intro; reflexivity.
Qed.
(**********)
Lemma pascal :
forall n i:nat, (i < n)%nat -> C n i + C n (S i) = C (S n) (S i).
Proof.
intros.
rewrite pascal_step3; [ idtac | assumption ].
replace (C n i + INR (n - i) / INR (S i) * C n i) with
(C n i * (1 + INR (n - i) / INR (S i))); [ idtac | ring ].
replace (1 + INR (n - i) / INR (S i)) with (INR (S n) / INR (S i)).
rewrite pascal_step1.
rewrite Rmult_comm; replace (S i) with (S n - (n - i))%nat.
rewrite <- pascal_step2.
apply pascal_step1.
apply Nat.le_trans with n.
apply le_minusni_n.
apply Nat.lt_le_incl; assumption.
apply Nat.le_succ_diag_r.
apply le_minusni_n.
apply Nat.lt_le_incl; assumption.
rewrite Nat.sub_succ_l.
cut ((n - (n - i))%nat = i).
intro; rewrite H0; reflexivity.
apply Nat.add_sub_eq_l, Nat.sub_add.
apply Nat.lt_le_incl; assumption.
apply le_minusni_n; apply Nat.lt_le_incl; assumption.
apply Nat.lt_le_incl; assumption.
unfold Rdiv.
repeat rewrite S_INR.
rewrite minus_INR.
cut (INR i + 1 <> 0).
intro.
apply Rmult_eq_reg_l with (INR i + 1); [ idtac | assumption ].
rewrite Rmult_plus_distr_l.
rewrite Rmult_1_r.
do 2 rewrite (Rmult_comm (INR i + 1)).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym; [ idtac | assumption ].
ring.
rewrite <- S_INR.
apply not_O_INR; discriminate.
apply Nat.lt_le_incl; assumption.
Qed.
(*********************)
(*********************)
Lemma binomial :
forall (x y:R) (n:nat),
(x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
Proof.
intros; induction n as [| n Hrecn].
unfold C; simpl; unfold Rdiv;
repeat rewrite Rmult_1_r; rewrite Rinv_1; ring.
pattern (S n) at 1; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add; rewrite Hrecn.
replace ((x + y) ^ 1) with (x + y); [ idtac | simpl; ring ].
rewrite tech5.
cut (forall p:nat, C p p = 1).
cut (forall p:nat, C p 0 = 1).
intros; rewrite H0; rewrite Nat.sub_diag; rewrite Rmult_1_l.
replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl; reflexivity ].
induction n as [| n Hrecn0].
simpl; do 2 rewrite H; ring.
(* N >= 1 *)
set (N := S n).
rewrite Rmult_plus_distr_l.
replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * x) with
(sum_f_R0 (fun i:nat => C N i * x ^ S i * y ^ (N - i)) N).
replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * y) with
(sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (S N - i)) N).
rewrite (decomp_sum (fun i:nat => C (S N) i * x ^ i * y ^ (S N - i)) N).
rewrite H; replace (x ^ 0) with 1; [ idtac | reflexivity ].
do 2 rewrite Rmult_1_l.
replace (S N - 0)%nat with (S N); [ idtac | reflexivity ].
set (An := fun i:nat => C N i * x ^ S i * y ^ (N - i)).
set (Bn := fun i:nat => C N (S i) * x ^ S i * y ^ (N - i)).
replace (pred N) with n.
replace (sum_f_R0 (fun i:nat => C (S N) (S i) * x ^ S i * y ^ (S N - S i)) n)
with (sum_f_R0 (fun i:nat => An i + Bn i) n).
rewrite plus_sum.
replace (x ^ S N) with (An (S n)).
rewrite (Rplus_comm (sum_f_R0 An n)).
repeat rewrite Rplus_assoc.
rewrite <- tech5.
fold N.
set (Cn := fun i:nat => C N i * x ^ i * y ^ (S N - i)).
cut (forall i:nat, (i < N)%nat -> Cn (S i) = Bn i).
intro; replace (sum_f_R0 Bn n) with (sum_f_R0 (fun i:nat => Cn (S i)) n).
replace (y ^ S N) with (Cn 0%nat).
rewrite <- Rplus_assoc; rewrite (decomp_sum Cn N).
replace (pred N) with n.
ring.
unfold N; simpl; reflexivity.
unfold N; apply Nat.lt_0_succ.
unfold Cn; rewrite H; simpl; ring.
apply sum_eq.
intros; apply H1.
unfold N; apply Nat.le_lt_trans with n; [ assumption | apply Nat.lt_succ_diag_r ].
reflexivity.
unfold An; fold N; rewrite Nat.sub_diag; rewrite H0;
simpl; ring.
apply sum_eq.
intros; unfold An, Bn.
change (S N - S i)%nat with (N - i)%nat.
rewrite <- pascal;
[ ring
| apply Nat.le_lt_trans with n; [ assumption | unfold N; apply Nat.lt_succ_diag_r ] ].
unfold N; reflexivity.
unfold N; apply Nat.lt_0_succ.
rewrite <- (Rmult_comm y); rewrite scal_sum; apply sum_eq.
intros; replace (S N - i)%nat with (S (N - i)).
replace (S (N - i)) with (N - i + 1)%nat; [ idtac | ring ].
rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl; ring ];
ring.
symmetry; apply Nat.sub_succ_l; assumption.
rewrite <- (Rmult_comm x); rewrite scal_sum; apply sum_eq.
intros; replace (S i) with (i + 1)%nat; [ idtac | ring ]; rewrite pow_add;
replace (x ^ 1) with x; [ idtac | simpl; ring ];
ring.
intro; unfold C.
replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
replace (p - 0)%nat with p; [ idtac | symmetry; apply Nat.sub_0_r ].
rewrite Rmult_1_l; unfold Rdiv; rewrite <- Rinv_r_sym;
[ reflexivity | apply INR_fact_neq_0 ].
intro; unfold C.
replace (p - p)%nat with 0%nat; [ idtac | symmetry; apply Nat.sub_diag ].
replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym;
[ reflexivity | apply INR_fact_neq_0 ].
Qed.
|