File: Binomial.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (190 lines) | stat: -rw-r--r-- 7,214 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import PartSum.
Local Open Scope R_scope.

Definition C (n p:nat) : R :=
  INR (fact n) / (INR (fact p) * INR (fact (n - p))).

Lemma pascal_step1 : forall n i:nat, (i <= n)%nat -> C n i = C n (n - i).
Proof.
  intros; unfold C; replace (n - (n - i))%nat with i.
  rewrite Rmult_comm.
  reflexivity.
  symmetry; apply Nat.add_sub_eq_l, Nat.sub_add; assumption.
Qed.

Lemma pascal_step2 :
  forall n i:nat,
    (i <= n)%nat -> C (S n) i = INR (S n) / INR (S n - i) * C n i.
Proof.
  intros; unfold C; replace (S n - i)%nat with (S (n - i)).
  cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
  intro; repeat rewrite H0.
  unfold Rdiv; repeat rewrite mult_INR; repeat rewrite Rinv_mult.
  ring.
  intro; reflexivity.
  symmetry; apply Nat.sub_succ_l; assumption.
Qed.

Lemma pascal_step3 :
  forall n i:nat, (i < n)%nat -> C n (S i) = INR (n - i) / INR (S i) * C n i.
Proof.
  intros; unfold C.
  cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
  intro.
  cut ((n - i)%nat = S (n - S i)).
  intro.
  pattern (n - i)%nat at 2; rewrite H1.
  repeat rewrite H0; unfold Rdiv; repeat rewrite mult_INR;
    repeat rewrite Rinv_mult.
  rewrite <- H1; rewrite (Rmult_comm (/ INR (n - i)));
    repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (n - i)));
      repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  ring.
  apply not_O_INR; apply minus_neq_O; assumption.
  rewrite <- Nat.sub_succ_l.
  simpl; reflexivity.
  apply -> Nat.le_succ_l; assumption.
  intro; reflexivity.
Qed.

  (**********)
Lemma pascal :
  forall n i:nat, (i < n)%nat -> C n i + C n (S i) = C (S n) (S i).
Proof.
  intros.
  rewrite pascal_step3; [ idtac | assumption ].
  replace (C n i + INR (n - i) / INR (S i) * C n i) with
    (C n i * (1 + INR (n - i) / INR (S i))); [ idtac | ring ].
  replace (1 + INR (n - i) / INR (S i)) with (INR (S n) / INR (S i)).
  rewrite pascal_step1.
  rewrite Rmult_comm; replace (S i) with (S n - (n - i))%nat.
  rewrite <- pascal_step2.
  apply pascal_step1.
  apply Nat.le_trans with n.
  apply le_minusni_n.
  apply Nat.lt_le_incl; assumption.
  apply Nat.le_succ_diag_r.
  apply le_minusni_n.
  apply Nat.lt_le_incl; assumption.
  rewrite Nat.sub_succ_l.
  cut ((n - (n - i))%nat = i).
  intro; rewrite H0; reflexivity.
  apply Nat.add_sub_eq_l, Nat.sub_add.
  apply Nat.lt_le_incl; assumption.
  apply le_minusni_n; apply Nat.lt_le_incl; assumption.
  apply Nat.lt_le_incl; assumption.
  unfold Rdiv.
  repeat rewrite S_INR.
  rewrite minus_INR.
  cut (INR i + 1 <> 0).
  intro.
  apply Rmult_eq_reg_l with (INR i + 1); [ idtac | assumption ].
  rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  do 2 rewrite (Rmult_comm (INR i + 1)).
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym; [ idtac | assumption ].
  ring.
  rewrite <- S_INR.
  apply not_O_INR; discriminate.
  apply Nat.lt_le_incl; assumption.
Qed.

  (*********************)
  (*********************)
Lemma binomial :
  forall (x y:R) (n:nat),
    (x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
Proof.
  intros; induction  n as [| n Hrecn].
  unfold C; simpl; unfold Rdiv;
    repeat rewrite Rmult_1_r; rewrite Rinv_1; ring.
  pattern (S n) at 1; replace (S n) with (n + 1)%nat; [ idtac | ring ].
  rewrite pow_add; rewrite Hrecn.
  replace ((x + y) ^ 1) with (x + y); [ idtac | simpl; ring ].
  rewrite tech5.
  cut (forall p:nat, C p p = 1).
  cut (forall p:nat, C p 0 = 1).
  intros; rewrite H0; rewrite Nat.sub_diag; rewrite Rmult_1_l.
  replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl; reflexivity ].
  induction  n as [| n Hrecn0].
  simpl; do 2 rewrite H; ring.
  (* N >= 1 *)
  set (N := S n).
  rewrite Rmult_plus_distr_l.
  replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * x) with
    (sum_f_R0 (fun i:nat => C N i * x ^ S i * y ^ (N - i)) N).
  replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * y) with
    (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (S N - i)) N).
  rewrite (decomp_sum (fun i:nat => C (S N) i * x ^ i * y ^ (S N - i)) N).
  rewrite H; replace (x ^ 0) with 1; [ idtac | reflexivity ].
  do 2 rewrite Rmult_1_l.
  replace (S N - 0)%nat with (S N); [ idtac | reflexivity ].
  set (An := fun i:nat => C N i * x ^ S i * y ^ (N - i)).
  set (Bn := fun i:nat => C N (S i) * x ^ S i * y ^ (N - i)).
  replace (pred N) with n.
  replace (sum_f_R0 (fun i:nat => C (S N) (S i) * x ^ S i * y ^ (S N - S i)) n)
    with (sum_f_R0 (fun i:nat => An i + Bn i) n).
  rewrite plus_sum.
  replace (x ^ S N) with (An (S n)).
  rewrite (Rplus_comm (sum_f_R0 An n)).
  repeat rewrite Rplus_assoc.
  rewrite <- tech5.
  fold N.
  set (Cn := fun i:nat => C N i * x ^ i * y ^ (S N - i)).
  cut (forall i:nat, (i < N)%nat -> Cn (S i) = Bn i).
  intro; replace (sum_f_R0 Bn n) with (sum_f_R0 (fun i:nat => Cn (S i)) n).
  replace (y ^ S N) with (Cn 0%nat).
  rewrite <- Rplus_assoc; rewrite (decomp_sum Cn N).
  replace (pred N) with n.
  ring.
  unfold N; simpl; reflexivity.
  unfold N; apply Nat.lt_0_succ.
  unfold Cn; rewrite H; simpl; ring.
  apply sum_eq.
  intros; apply H1.
  unfold N; apply Nat.le_lt_trans with n; [ assumption | apply Nat.lt_succ_diag_r ].
  reflexivity.
  unfold An; fold N; rewrite Nat.sub_diag; rewrite H0;
    simpl; ring.
  apply sum_eq.
  intros; unfold An, Bn.
  change (S N - S i)%nat with (N - i)%nat.
  rewrite <- pascal;
    [ ring
      | apply Nat.le_lt_trans with n; [ assumption | unfold N; apply Nat.lt_succ_diag_r ] ].
  unfold N; reflexivity.
  unfold N; apply Nat.lt_0_succ.
  rewrite <- (Rmult_comm y); rewrite scal_sum; apply sum_eq.
  intros; replace (S N - i)%nat with (S (N - i)).
  replace (S (N - i)) with (N - i + 1)%nat; [ idtac | ring ].
  rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl; ring ];
    ring.
  symmetry; apply Nat.sub_succ_l; assumption.
  rewrite <- (Rmult_comm x); rewrite scal_sum; apply sum_eq.
  intros; replace (S i) with (i + 1)%nat; [ idtac | ring ]; rewrite pow_add;
    replace (x ^ 1) with x; [ idtac | simpl; ring ];
      ring.
  intro; unfold C.
  replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
  replace (p - 0)%nat with p; [ idtac | symmetry; apply Nat.sub_0_r ].
  rewrite Rmult_1_l; unfold Rdiv; rewrite <- Rinv_r_sym;
    [ reflexivity | apply INR_fact_neq_0 ].
  intro; unfold C.
  replace (p - p)%nat with 0%nat; [ idtac | symmetry; apply Nat.sub_diag ].
  replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
  rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym;
    [ reflexivity | apply INR_fact_neq_0 ].
Qed.