1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo_def.
Require Import Cos_rel.
Require Import Lia.
Local Open Scope nat_scope.
Local Open Scope R_scope.
Definition Majxy (x y:R) (n:nat) : R :=
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n) / INR (fact n).
Lemma Majxy_cv_R0 : forall x y:R, Un_cv (Majxy x y) 0.
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
set (C0 := C ^ 4).
cut (0 < C).
intro.
cut (0 < C0).
intro.
assert (H1 := cv_speed_pow_fact C0).
unfold Un_cv in H1; unfold R_dist in H1.
unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / C0);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ] ].
elim (H1 (eps / C0) H3); intros N0 H4.
exists N0; intros.
replace (Majxy x y n) with (C0 ^ S n / INR (fact n)).
simpl.
apply Rmult_lt_reg_l with (Rabs (/ C0)).
apply Rabs_pos_lt.
apply Rinv_neq_0_compat.
red; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
rewrite <- Rabs_mult.
unfold Rminus; rewrite Rmult_plus_distr_l.
rewrite Ropp_0; rewrite Rmult_0_r.
unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite (Rabs_right (/ C0)).
rewrite <- (Rmult_comm eps).
replace (C0 ^ n * / INR (fact n) + 0) with (C0 ^ n * / INR (fact n) - 0);
[ idtac | ring ].
unfold Rdiv in H4; apply H4; assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat; assumption.
red; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
unfold Majxy.
unfold C0.
rewrite pow_mult.
unfold C; reflexivity.
unfold C0; apply pow_lt; assumption.
apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C.
apply RmaxLess1.
Qed.
Lemma reste1_maj :
forall (x y:R) (N:nat),
(0 < N)%nat -> Rabs (Reste1 x y N) <= Majxy x y (pred N).
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
unfold Reste1.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
Rabs
(sum_f_R0
(fun l:nat =>
(-1) ^ S (l + k) / INR (fact (2 * S (l + k))) *
x ^ (2 * S (l + k)) *
((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
y ^ (2 * (N - l))) (pred (N - k)))) (
pred N)).
apply
(Rsum_abs
(fun k:nat =>
sum_f_R0
(fun l:nat =>
(-1) ^ S (l + k) / INR (fact (2 * S (l + k))) *
x ^ (2 * S (l + k)) * ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
y ^ (2 * (N - l))) (pred (N - k))) (pred N)).
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
Rabs
((-1) ^ S (l + k) / INR (fact (2 * S (l + k))) *
x ^ (2 * S (l + k)) *
((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
y ^ (2 * (N - l)))) (pred (N - k))) (
pred N)).
apply sum_Rle.
intros.
apply
(Rsum_abs
(fun l:nat =>
(-1) ^ S (l + n) / INR (fact (2 * S (l + n))) * x ^ (2 * S (l + n)) *
((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
y ^ (2 * (N - l))) (pred (N - n))).
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
/ INR (fact (2 * S (l + k)) * fact (2 * (N - l))) *
C ^ (2 * S (N + k))) (pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
unfold Rdiv; repeat rewrite Rabs_mult.
do 2 rewrite pow_1_abs.
do 2 rewrite Rmult_1_l.
rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n))))).
rewrite (Rabs_right (/ INR (fact (2 * (N - n0))))).
rewrite mult_INR.
rewrite Rinv_mult.
repeat rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
rewrite <- Rmult_assoc.
rewrite <- (Rmult_comm (/ INR (fact (2 * (N - n0))))).
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
do 2 rewrite <- RPow_abs.
apply Rle_trans with (Rabs x ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))).
apply Rmult_le_compat_l.
apply pow_le; apply Rabs_pos.
apply pow_incr.
split.
apply Rabs_pos.
unfold C.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
apply Rle_trans with (C ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))).
do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0)))).
apply Rmult_le_compat_l.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
unfold C; apply RmaxLess1.
apply pow_incr.
split.
apply Rabs_pos.
unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
apply RmaxLess2.
right.
replace (2 * S (N + n))%nat with (2 * (N - n0) + 2 * S (n0 + n))%nat.
rewrite pow_add.
apply Rmult_comm.
apply INR_eq; rewrite plus_INR; do 3 rewrite mult_INR.
rewrite minus_INR.
repeat rewrite S_INR; do 2 rewrite plus_INR; ring.
apply Nat.le_trans with (pred (N - n)).
exact H1.
apply le_S_n.
replace (S (pred (N - n))) with (N - n)%nat.
apply Nat.le_trans with N.
apply (fun p n m:nat => Nat.add_le_mono_l n m p) with n.
rewrite Nat.add_comm, Nat.sub_add.
rewrite Nat.add_comm; apply Nat.le_add_r.
apply Nat.le_trans with (pred N).
assumption.
apply Nat.le_pred_l.
apply Nat.le_succ_diag_r.
symmetry; apply Nat.lt_succ_pred with 0%nat.
apply Nat.add_lt_mono_l with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
replace (n + 0)%nat with n; [ idtac | ring ].
apply Nat.le_lt_trans with (pred N).
assumption.
apply Nat.lt_pred_l, Nat.neq_0_lt_0; assumption.
apply Nat.le_trans with (pred N).
assumption.
apply Nat.le_pred_l.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
/ INR (fact (2 * S (l + k)) * fact (2 * (N - l))) * C ^ (4 * N))
(pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat.
rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
apply Rle_pow.
unfold C; apply RmaxLess1.
replace (4 * N)%nat with (2 * (2 * N))%nat; [ idtac | ring ].
apply (fun m n p:nat => Nat.mul_le_mono_nonneg_l p n m). apply Nat.le_0_l.
replace (2 * N)%nat with (S (N + pred N)).
apply le_n_S.
apply Nat.add_le_mono_l; assumption.
rewrite <- Nat.sub_1_r.
lia.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0 (fun l:nat => C ^ (4 * N) * Rsqr (/ INR (fact (S (N + k)))))
(pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
rewrite <- (Rmult_comm (C ^ (4 * N))).
apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C; apply RmaxLess1.
replace (/ INR (fact (2 * S (n0 + n)) * fact (2 * (N - n0)))) with
(Binomial.C (2 * S (N + n)) (2 * S (n0 + n)) / INR (fact (2 * S (N + n)))).
apply Rle_trans with
(Binomial.C (2 * S (N + n)) (S (N + n)) / INR (fact (2 * S (N + n)))).
unfold Rdiv;
do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (N + n))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply C_maj.
lia.
right.
unfold Rdiv; rewrite Rmult_comm.
unfold Binomial.C.
unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (N + n) - S (N + n))%nat with (S (N + n)).
rewrite Rinv_mult.
unfold Rsqr; reflexivity.
lia.
apply INR_fact_neq_0.
unfold Rdiv; rewrite Rmult_comm.
unfold Binomial.C.
unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (N + n) - 2 * S (n0 + n))%nat with (2 * (N - n0))%nat.
rewrite mult_INR.
reflexivity.
lia.
apply INR_fact_neq_0.
apply Rle_trans with
(sum_f_R0 (fun k:nat => INR N / INR (fact (S N)) * C ^ (4 * N)) (pred N)).
apply sum_Rle; intros.
rewrite <-
(scal_sum (fun _:nat => C ^ (4 * N)) (pred (N - n))
(Rsqr (/ INR (fact (S (N + n)))))).
rewrite sum_cte.
rewrite <- Rmult_assoc.
do 2 rewrite <- (Rmult_comm (C ^ (4 * N))).
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C; apply RmaxLess1.
apply Rle_trans with (Rsqr (/ INR (fact (S (N + n)))) * INR N).
apply Rmult_le_compat_l.
apply Rle_0_sqr.
apply le_INR.
lia.
rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
apply Rle_trans with (/ INR (fact (S (N + n)))).
pattern (/ INR (fact (S (N + n)))) at 2; rewrite <- Rmult_1_r.
unfold Rsqr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S (N + n)))).
apply INR_fact_lt_0.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r.
apply (le_INR 1).
apply Nat.le_succ_l.
apply INR_lt; apply INR_fact_lt_0.
apply INR_fact_neq_0.
apply Rmult_le_reg_l with (INR (fact (S (N + n)))).
apply INR_fact_lt_0.
rewrite <- Rinv_r_sym.
apply Rmult_le_reg_l with (INR (fact (S N))).
apply INR_fact_lt_0.
rewrite Rmult_1_r.
rewrite (Rmult_comm (INR (fact (S N)))).
rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
apply le_INR.
apply fact_le.
apply -> Nat.succ_le_mono.
apply Nat.le_add_r.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
rewrite sum_cte.
apply Rle_trans with (C ^ (4 * N) / INR (fact (pred N))).
rewrite <- (Rmult_comm (C ^ (4 * N))).
unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C; apply RmaxLess1.
cut (S (pred N) = N).
intro; rewrite H0.
pattern N at 2; rewrite <- H0.
do 2 rewrite fact_simpl.
rewrite H0.
repeat rewrite mult_INR.
repeat rewrite Rinv_mult.
rewrite (Rmult_comm (/ INR (S N))).
repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
pattern (/ INR (fact (pred N))) at 2; rewrite <- Rmult_1_r.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (S N)).
apply lt_INR_0; apply Nat.lt_0_succ.
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; rewrite Rmult_1_l.
apply le_INR; apply Nat.le_succ_diag_r.
apply not_O_INR; discriminate.
apply not_O_INR.
red; intro; rewrite H1 in H; elim (Nat.lt_irrefl _ H).
apply Nat.lt_succ_pred with 0%nat; assumption.
right.
unfold Majxy.
unfold C.
replace (S (pred N)) with N.
reflexivity.
symmetry; apply Nat.lt_succ_pred with 0%nat; assumption.
Qed.
Lemma reste2_maj :
forall (x y:R) (N:nat), (0 < N)%nat -> Rabs (Reste2 x y N) <= Majxy x y N.
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
unfold Reste2.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
Rabs
(sum_f_R0
(fun l:nat =>
(-1) ^ S (l + k) / INR (fact (2 * S (l + k) + 1)) *
x ^ (2 * S (l + k) + 1) *
((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
y ^ (2 * (N - l) + 1)) (pred (N - k)))) (
pred N)).
apply
(Rsum_abs
(fun k:nat =>
sum_f_R0
(fun l:nat =>
(-1) ^ S (l + k) / INR (fact (2 * S (l + k) + 1)) *
x ^ (2 * S (l + k) + 1) *
((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
y ^ (2 * (N - l) + 1)) (pred (N - k))) (
pred N)).
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
Rabs
((-1) ^ S (l + k) / INR (fact (2 * S (l + k) + 1)) *
x ^ (2 * S (l + k) + 1) *
((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
y ^ (2 * (N - l) + 1))) (pred (N - k))) (
pred N)).
apply sum_Rle.
intros.
apply
(Rsum_abs
(fun l:nat =>
(-1) ^ S (l + n) / INR (fact (2 * S (l + n) + 1)) *
x ^ (2 * S (l + n) + 1) *
((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
y ^ (2 * (N - l) + 1)) (pred (N - n))).
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
/ INR (fact (2 * S (l + k) + 1) * fact (2 * (N - l) + 1)) *
C ^ (2 * S (S (N + k)))) (pred (N - k))) (
pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
unfold Rdiv; repeat rewrite Rabs_mult.
do 2 rewrite pow_1_abs.
do 2 rewrite Rmult_1_l.
rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n) + 1)))).
rewrite (Rabs_right (/ INR (fact (2 * (N - n0) + 1)))).
rewrite mult_INR.
rewrite Rinv_mult.
repeat rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
rewrite <- Rmult_assoc.
rewrite <- (Rmult_comm (/ INR (fact (2 * (N - n0) + 1)))).
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
do 2 rewrite <- RPow_abs.
apply Rle_trans with (Rabs x ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)).
apply Rmult_le_compat_l.
apply pow_le; apply Rabs_pos.
apply pow_incr.
split.
apply Rabs_pos.
unfold C.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
apply Rle_trans with (C ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)).
do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0) + 1))).
apply Rmult_le_compat_l.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
unfold C; apply RmaxLess1.
apply pow_incr.
split.
apply Rabs_pos.
unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
apply RmaxLess2.
right.
replace (2 * S (S (N + n)))%nat with
(2 * (N - n0) + 1 + (2 * S (n0 + n) + 1))%nat.
repeat rewrite pow_add.
ring.
lia.
apply Rle_ge; left; apply Rinv_0_lt_compat.
apply INR_fact_lt_0.
apply Rle_ge; left; apply Rinv_0_lt_compat.
apply INR_fact_lt_0.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
/ INR (fact (2 * S (l + k) + 1) * fact (2 * (N - l) + 1)) *
C ^ (4 * S N)) (pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat.
rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
apply Rle_pow.
unfold C; apply RmaxLess1.
replace (4 * S N)%nat with (2 * (2 * S N))%nat; [ idtac | ring ].
apply (fun m n p:nat => Nat.mul_le_mono_nonneg_l p n m). apply Nat.le_0_l.
replace (2 * S N)%nat with (S (S (N + N))).
repeat apply le_n_S.
apply Nat.add_le_mono_l.
apply Nat.le_trans with (pred N).
assumption.
apply Nat.le_pred_l.
ring.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat => C ^ (4 * S N) * Rsqr (/ INR (fact (S (S (N + k))))))
(pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
rewrite <- (Rmult_comm (C ^ (4 * S N))).
apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C; apply RmaxLess1.
replace (/ INR (fact (2 * S (n0 + n) + 1) * fact (2 * (N - n0) + 1))) with
(Binomial.C (2 * S (S (N + n))) (2 * S (n0 + n) + 1) /
INR (fact (2 * S (S (N + n))))).
apply Rle_trans with
(Binomial.C (2 * S (S (N + n))) (S (S (N + n))) /
INR (fact (2 * S (S (N + n))))).
unfold Rdiv;
do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (S (N + n)))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply C_maj.
apply Nat.le_trans with (2 * S (S (n0 + n)))%nat.
replace (2 * S (S (n0 + n)))%nat with (S (2 * S (n0 + n) + 1)).
apply Nat.le_succ_diag_r.
ring.
lia.
right.
unfold Rdiv; rewrite Rmult_comm.
unfold Binomial.C.
unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (S (N + n)) - S (S (N + n)))%nat with (S (S (N + n))).
rewrite Rinv_mult.
unfold Rsqr; reflexivity.
lia.
apply INR_fact_neq_0.
unfold Rdiv; rewrite Rmult_comm.
unfold Binomial.C.
unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (S (N + n)) - (2 * S (n0 + n) + 1))%nat with
(2 * (N - n0) + 1)%nat.
rewrite mult_INR.
reflexivity.
lia.
apply INR_fact_neq_0.
apply Rle_trans with
(sum_f_R0 (fun k:nat => INR N / INR (fact (S (S N))) * C ^ (4 * S N))
(pred N)).
apply sum_Rle; intros.
rewrite <-
(scal_sum (fun _:nat => C ^ (4 * S N)) (pred (N - n))
(Rsqr (/ INR (fact (S (S (N + n))))))).
rewrite sum_cte.
rewrite <- Rmult_assoc.
do 2 rewrite <- (Rmult_comm (C ^ (4 * S N))).
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C; apply RmaxLess1.
apply Rle_trans with (Rsqr (/ INR (fact (S (S (N + n))))) * INR N).
apply Rmult_le_compat_l.
apply Rle_0_sqr.
replace (S (pred (N - n))) with (N - n)%nat.
apply le_INR.
lia.
lia.
rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
apply Rle_trans with (/ INR (fact (S (S (N + n))))).
pattern (/ INR (fact (S (S (N + n))))) at 2; rewrite <- Rmult_1_r.
unfold Rsqr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))).
apply INR_fact_lt_0.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r.
apply (le_INR 1).
apply Nat.le_succ_l.
apply INR_lt; apply INR_fact_lt_0.
apply INR_fact_neq_0.
apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))).
apply INR_fact_lt_0.
rewrite <- Rinv_r_sym.
apply Rmult_le_reg_l with (INR (fact (S (S N)))).
apply INR_fact_lt_0.
rewrite Rmult_1_r.
rewrite (Rmult_comm (INR (fact (S (S N))))).
rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
apply le_INR.
apply fact_le.
lia.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
rewrite sum_cte.
apply Rle_trans with (C ^ (4 * S N) / INR (fact N)).
rewrite <- (Rmult_comm (C ^ (4 * S N))).
unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
unfold C; apply RmaxLess1.
cut (S (pred N) = N).
intro; rewrite H0.
do 2 rewrite fact_simpl.
repeat rewrite mult_INR.
repeat rewrite Rinv_mult.
apply Rle_trans with
(INR (S (S N)) * (/ INR (S (S N)) * (/ INR (S N) * / INR (fact N))) * INR N).
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (INR N)).
rewrite (Rmult_comm (INR (S (S N)))).
apply Rmult_le_compat_l.
repeat apply Rmult_le_pos.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply Nat.lt_0_succ.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply Nat.lt_0_succ.
left; apply Rinv_0_lt_compat.
apply INR_fact_lt_0.
apply pos_INR.
apply le_INR.
apply Nat.le_trans with (S N); apply Nat.le_succ_diag_r.
repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
apply Rle_trans with (/ INR (S N) * / INR (fact N) * INR (S N)).
repeat rewrite Rmult_assoc.
repeat apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply Nat.lt_0_succ.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply le_INR; apply Nat.le_succ_diag_r.
rewrite (Rmult_comm (/ INR (S N))).
rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; right; reflexivity.
apply not_O_INR; discriminate.
apply not_O_INR; discriminate.
apply Nat.lt_succ_pred with 0%nat; assumption.
right.
unfold Majxy.
unfold C.
reflexivity.
Qed.
Lemma reste1_cv_R0 : forall x y:R, Un_cv (Reste1 x y) 0.
Proof.
intros.
assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold R_dist in H.
unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros N0 H1.
exists (S N0); intros.
unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
apply Rle_lt_trans with (Rabs (Majxy x y (pred n))).
rewrite (Rabs_right (Majxy x y (pred n))).
apply reste1_maj.
apply Nat.lt_le_trans with (S N0).
apply Nat.lt_0_succ.
assumption.
apply Rle_ge.
unfold Majxy.
unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
apply RmaxLess1.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
replace (Majxy x y (pred n)) with (Majxy x y (pred n) - 0); [ idtac | ring ].
apply H1.
unfold ge; apply le_S_n.
replace (S (pred n)) with n.
assumption.
symmetry; apply Nat.lt_succ_pred with 0%nat.
apply Nat.lt_le_trans with (S N0); [ apply Nat.lt_0_succ | assumption ].
Qed.
Lemma reste2_cv_R0 : forall x y:R, Un_cv (Reste2 x y) 0.
Proof.
intros.
assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold R_dist in H.
unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros N0 H1.
exists (S N0); intros.
unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
apply Rle_lt_trans with (Rabs (Majxy x y n)).
rewrite (Rabs_right (Majxy x y n)).
apply reste2_maj.
apply Nat.lt_le_trans with (S N0).
apply Nat.lt_0_succ.
assumption.
apply Rle_ge.
unfold Majxy.
unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
apply RmaxLess1.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
replace (Majxy x y n) with (Majxy x y n - 0); [ idtac | ring ].
apply H1.
unfold ge; apply Nat.le_trans with (S N0).
apply Nat.le_succ_diag_r.
exact H2.
Qed.
Lemma reste_cv_R0 : forall x y:R, Un_cv (Reste x y) 0.
Proof.
intros.
unfold Reste.
set (An := fun n:nat => Reste2 x y n).
set (Bn := fun n:nat => Reste1 x y (S n)).
cut
(Un_cv (fun n:nat => An n - Bn n) (0 - 0) ->
Un_cv (fun N:nat => Reste2 x y N - Reste1 x y (S N)) 0).
intro.
apply H.
apply CV_minus.
unfold An.
replace (fun n:nat => Reste2 x y n) with (Reste2 x y).
apply reste2_cv_R0.
reflexivity.
unfold Bn.
assert (H0 := reste1_cv_R0 x y).
unfold Un_cv in H0; unfold R_dist in H0.
unfold Un_cv; unfold R_dist; intros.
elim (H0 eps H1); intros N0 H2.
exists N0; intros.
apply H2.
unfold ge; apply Nat.le_trans with (S N0).
apply Nat.le_succ_diag_r.
apply -> Nat.succ_le_mono; assumption.
unfold An, Bn.
intro.
replace 0 with (0 - 0); [ idtac | ring ].
exact H.
Qed.
Theorem cos_plus : forall x y:R, cos (x + y) = cos x * cos y - sin x * sin y.
Proof.
intros.
cut (Un_cv (C1 x y) (cos x * cos y - sin x * sin y)).
cut (Un_cv (C1 x y) (cos (x + y))).
intros.
apply UL_sequence with (C1 x y); assumption.
apply C1_cvg.
unfold Un_cv; unfold R_dist.
intros.
assert (H0 := A1_cvg x).
assert (H1 := A1_cvg y).
assert (H2 := B1_cvg x).
assert (H3 := B1_cvg y).
assert (H4 := CV_mult _ _ _ _ H0 H1).
assert (H5 := CV_mult _ _ _ _ H2 H3).
assert (H6 := reste_cv_R0 x y).
unfold Un_cv in H4; unfold Un_cv in H5; unfold Un_cv in H6.
unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6.
cut (0 < eps / 3);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H4 (eps / 3) H7); intros N1 H8.
elim (H5 (eps / 3) H7); intros N2 H9.
elim (H6 (eps / 3) H7); intros N3 H10.
set (N := S (S (max (max N1 N2) N3))).
exists N.
intros.
cut (n = S (pred n)).
intro; rewrite H12.
rewrite <- cos_plus_form.
rewrite <- H12.
apply Rle_lt_trans with
(Rabs (A1 x n * A1 y n - cos x * cos y) +
Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n))).
replace
(A1 x n * A1 y n - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n) -
(cos x * cos y - sin x * sin y)) with
(A1 x n * A1 y n - cos x * cos y +
(sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n)));
[ apply Rabs_triang | ring ].
replace eps with (eps / 3 + (eps / 3 + eps / 3)).
apply Rplus_lt_compat.
apply H8.
unfold ge; apply Nat.le_trans with N.
unfold N.
apply Nat.le_trans with (max N1 N2).
apply Nat.le_max_l.
apply Nat.le_trans with (max (max N1 N2) N3).
apply Nat.le_max_l.
apply Nat.le_trans with (S (max (max N1 N2) N3)); apply Nat.le_succ_diag_r.
assumption.
apply Rle_lt_trans with
(Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n)) +
Rabs (Reste x y (pred n))).
apply Rabs_triang.
apply Rplus_lt_compat.
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr.
apply H9.
unfold ge; apply Nat.le_trans with (max N1 N2).
apply Nat.le_max_r.
apply Nat.succ_le_mono.
rewrite <- H12.
apply Nat.le_trans with N.
unfold N.
apply -> Nat.succ_le_mono.
apply Nat.le_trans with (max (max N1 N2) N3).
apply Nat.le_max_l.
apply Nat.le_succ_diag_r.
assumption.
replace (Reste x y (pred n)) with (Reste x y (pred n) - 0).
apply H10.
unfold ge.
apply Nat.succ_le_mono.
rewrite <- H12.
apply Nat.le_trans with N.
unfold N.
apply -> Nat.succ_le_mono.
apply Nat.le_trans with (max (max N1 N2) N3).
apply Nat.le_max_r.
apply Nat.le_succ_diag_r.
assumption.
ring.
pattern eps at 4; replace eps with (3 * (eps / 3)).
ring.
unfold Rdiv.
rewrite <- Rmult_assoc.
apply Rinv_r_simpl_m.
discrR.
apply Nat.lt_le_trans with (pred N).
unfold N; simpl; apply Nat.lt_0_succ.
apply le_S_n.
rewrite <- H12.
replace (S (pred N)) with N.
assumption.
unfold N; simpl; reflexivity.
cut (0 < N)%nat.
intro.
cut (0 < n)%nat.
intro.
symmetry; apply Nat.lt_succ_pred with 0%nat; assumption.
apply Nat.lt_le_trans with N; assumption.
unfold N; apply Nat.lt_0_succ.
Qed.
(* TODO #14736 for compatibility only, should be removed after deprecation *)
Require Import Max.
|