1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import PSeries_reg.
Require Import Lia.
Local Open Scope nat_scope.
Local Open Scope R_scope.
Definition E1 (x:R) (N:nat) : R :=
sum_f_R0 (fun k:nat => / INR (fact k) * x ^ k) N.
Lemma E1_cvg : forall x:R, Un_cv (E1 x) (exp x).
Proof.
intro; unfold exp; unfold projT1.
case (exist_exp x); intro.
unfold exp_in, Un_cv; unfold infinite_sum, E1; trivial.
Qed.
Definition Reste_E (x y:R) (N:nat) : R :=
sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
/ INR (fact (S (l + k))) * x ^ S (l + k) *
(/ INR (fact (N - l)) * y ^ (N - l))) (
pred (N - k))) (pred N).
Lemma exp_form :
forall (x y:R) (n:nat),
(0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) n.
Proof.
intros; unfold E1.
rewrite cauchy_finite.
unfold Reste_E; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; apply sum_eq;
intros.
rewrite binomial.
rewrite scal_sum; apply sum_eq; intros.
unfold C; unfold Rdiv; repeat rewrite Rmult_assoc;
rewrite (Rmult_comm (INR (fact i))); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite Rinv_mult.
ring.
apply INR_fact_neq_0.
apply H.
Qed.
Definition maj_Reste_E (x y:R) (N:nat) : R :=
4 *
(Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) /
Rsqr (INR (fact (Nat.div2 (pred N))))).
(**********)
Lemma div2_double : forall N:nat, Nat.div2 (2 * N) = N.
Proof.
intro; induction N as [| N HrecN].
reflexivity.
replace (2 * S N)%nat with (S (S (2 * N))).
simpl; simpl in HrecN; rewrite HrecN; reflexivity.
ring.
Qed.
Lemma div2_S_double : forall N:nat, Nat.div2 (S (2 * N)) = N.
Proof.
intro; induction N as [| N HrecN].
reflexivity.
replace (2 * S N)%nat with (S (S (2 * N))).
simpl; simpl in HrecN; rewrite HrecN; reflexivity.
ring.
Qed.
Lemma div2_not_R0 : forall N:nat, (1 < N)%nat -> (0 < Nat.div2 N)%nat.
Proof.
intros; induction N as [| N HrecN].
- elim (Nat.nlt_0_r _ H).
- cut ((1 < N)%nat \/ N = 1%nat).
{ intro; elim H0; intro.
+ destruct N; cbn; [ auto | apply Nat.lt_0_succ ].
+ subst N; simpl; apply Nat.lt_0_succ. }
inversion H.
right; reflexivity.
left; apply Nat.lt_le_trans with 2%nat; [ apply Nat.lt_succ_diag_r | assumption ].
Qed.
Lemma Reste_E_maj :
forall (x y:R) (N:nat),
(0 < N)%nat -> Rabs (Reste_E x y N) <= maj_Reste_E x y N.
Proof.
intros; set (M := Rmax 1 (Rmax (Rabs x) (Rabs y))).
apply Rle_trans with
(M ^ (2 * N) *
sum_f_R0
(fun k:nat =>
sum_f_R0 (fun l:nat => / Rsqr (INR (fact (Nat.div2 (S N)))))
(pred (N - k))) (pred N)).
unfold Reste_E.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
Rabs
(sum_f_R0
(fun l:nat =>
/ INR (fact (S (l + k))) * x ^ S (l + k) *
(/ INR (fact (N - l)) * y ^ (N - l))) (
pred (N - k)))) (pred N)).
apply
(Rsum_abs
(fun k:nat =>
sum_f_R0
(fun l:nat =>
/ INR (fact (S (l + k))) * x ^ S (l + k) *
(/ INR (fact (N - l)) * y ^ (N - l))) (
pred (N - k))) (pred N)).
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
Rabs
(/ INR (fact (S (l + k))) * x ^ S (l + k) *
(/ INR (fact (N - l)) * y ^ (N - l)))) (
pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply
(Rsum_abs
(fun l:nat =>
/ INR (fact (S (l + n))) * x ^ S (l + n) *
(/ INR (fact (N - l)) * y ^ (N - l)))).
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
sum_f_R0
(fun l:nat =>
M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l)))
(pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
repeat rewrite Rabs_mult.
do 2 rewrite <- RPow_abs.
rewrite (Rabs_right (/ INR (fact (S (n0 + n))))).
rewrite (Rabs_right (/ INR (fact (N - n0)))).
replace
(/ INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) *
(/ INR (fact (N - n0)) * Rabs y ^ (N - n0))) with
(/ INR (fact (N - n0)) * / INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) *
Rabs y ^ (N - n0)); [ idtac | ring ].
rewrite <- (Rmult_comm (/ INR (fact (N - n0)))).
repeat rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_trans with
(/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)).
rewrite (Rmult_comm (/ INR (fact (S (n0 + n)))));
rewrite (Rmult_comm (/ INR (fact (S n0)))); repeat rewrite Rmult_assoc;
apply Rmult_le_compat_l.
apply pow_le; apply Rabs_pos.
rewrite (Rmult_comm (/ INR (fact (S n0)))); apply Rmult_le_compat_l.
apply pow_le; apply Rabs_pos.
apply Rinv_le_contravar.
apply INR_fact_lt_0.
apply le_INR; apply fact_le; apply le_n_S.
apply Nat.le_add_r.
rewrite (Rmult_comm (M ^ (2 * N))); rewrite Rmult_assoc;
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_trans with (M ^ S (n0 + n) * Rabs y ^ (N - n0)).
do 2 rewrite <- (Rmult_comm (Rabs y ^ (N - n0))).
apply Rmult_le_compat_l.
apply pow_le; apply Rabs_pos.
apply pow_incr; split.
apply Rabs_pos.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
unfold M; apply RmaxLess2.
apply Rle_trans with (M ^ S (n0 + n) * M ^ (N - n0)).
apply Rmult_le_compat_l.
apply pow_le; apply Rle_trans with 1.
left; apply Rlt_0_1.
unfold M; apply RmaxLess1.
apply pow_incr; split.
apply Rabs_pos.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess2.
unfold M; apply RmaxLess2.
rewrite <- pow_add; replace (S (n0 + n) + (N - n0))%nat with (N + S n)%nat.
apply Rle_pow.
unfold M; apply RmaxLess1.
replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ].
apply Nat.add_le_mono_l.
replace N with (S (pred N)).
apply le_n_S; apply H0.
apply Nat.lt_succ_pred with 0%nat; apply H.
apply INR_eq; do 2 rewrite plus_INR; do 2 rewrite S_INR; rewrite plus_INR;
rewrite minus_INR.
ring.
apply Nat.le_trans with (pred (N - n)).
apply H1.
apply Nat.succ_le_mono.
replace (S (pred (N - n))) with (N - n)%nat.
apply Nat.le_trans with N.
apply (fun p n m:nat => Nat.add_le_mono_l n m p) with n.
rewrite Nat.add_comm, Nat.sub_add.
rewrite Nat.add_comm; apply Nat.le_add_r.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
apply Nat.le_succ_diag_r.
symmetry; apply Nat.lt_succ_pred with 0%nat.
apply Nat.add_lt_mono_l with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
replace (n + 0)%nat with n; [ idtac | ring ].
apply Nat.le_lt_trans with (pred N).
apply H0.
apply Nat.lt_pred_l.
apply Nat.neq_0_lt_0.
apply H.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
rewrite scal_sum.
apply sum_Rle; intros.
rewrite <- Rmult_comm.
rewrite scal_sum.
apply sum_Rle; intros.
rewrite (Rmult_comm (/ Rsqr (INR (fact (Nat.div2 (S N)))))).
rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
unfold M; apply RmaxLess1.
assert (H2 := even_odd_cor N).
elim H2; intros N0 H3.
elim H3; intro.
apply Rle_trans with (/ INR (fact n0) * / INR (fact (N - n0))).
do 2 rewrite <- (Rmult_comm (/ INR (fact (N - n0)))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rinv_le_contravar.
apply INR_fact_lt_0.
apply le_INR.
apply fact_le.
apply Nat.le_succ_diag_r.
replace (/ INR (fact n0) * / INR (fact (N - n0))) with
(C N n0 / INR (fact N)).
pattern N at 1; rewrite H4.
apply Rle_trans with (C N N0 / INR (fact N)).
unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact N))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
rewrite H4.
apply C_maj.
rewrite <- H4; apply Nat.le_trans with (pred (N - n)).
apply H1.
apply Nat.succ_le_mono.
replace (S (pred (N - n))) with (N - n)%nat.
apply Nat.le_trans with N.
apply (fun p n m:nat => Nat.add_le_mono_l n m p) with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
rewrite Nat.add_comm; apply Nat.le_add_r.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
apply Nat.le_succ_diag_r.
symmetry; apply Nat.lt_succ_pred with 0%nat.
apply Nat.add_lt_mono_l with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
replace (n + 0)%nat with n; [ idtac | ring ].
apply Nat.le_lt_trans with (pred N).
apply H0.
apply Nat.lt_pred_l.
apply Nat.neq_0_lt_0.
apply H.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
replace (C N N0 / INR (fact N)) with (/ Rsqr (INR (fact N0))).
rewrite H4; rewrite div2_S_double; right; reflexivity.
unfold Rsqr, C, Rdiv.
repeat rewrite Rinv_mult.
rewrite (Rmult_comm (INR (fact N))).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; replace (N - N0)%nat with N0.
ring.
replace N with (N0 + N0)%nat.
symmetry; apply Nat.add_sub.
rewrite H4.
ring.
apply INR_fact_neq_0.
unfold C, Rdiv.
rewrite (Rmult_comm (INR (fact N))).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rinv_mult.
rewrite Rmult_1_r; ring.
apply INR_fact_neq_0.
replace (/ INR (fact (S n0)) * / INR (fact (N - n0))) with
(C (S N) (S n0) / INR (fact (S N))).
apply Rle_trans with (C (S N) (S N0) / INR (fact (S N))).
unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact (S N)))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
cut (S N = (2 * S N0)%nat).
intro; rewrite H5; apply C_maj.
rewrite <- H5; apply le_n_S.
apply Nat.le_trans with (pred (N - n)).
apply H1.
apply Nat.succ_le_mono.
replace (S (pred (N - n))) with (N - n)%nat.
apply Nat.le_trans with N.
apply (fun p n m:nat => Nat.add_le_mono_l n m p) with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
rewrite Nat.add_comm; apply Nat.le_add_r.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
apply Nat.le_succ_diag_r.
symmetry; apply Nat.lt_succ_pred with 0%nat.
apply Nat.add_lt_mono_l with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
replace (n + 0)%nat with n; [ idtac | ring ].
apply Nat.le_lt_trans with (pred N).
apply H0.
apply Nat.lt_pred_l.
apply Nat.neq_0_lt_0.
apply H.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
rewrite H4; ring.
cut (S N = (2 * S N0)%nat).
intro.
replace (C (S N) (S N0) / INR (fact (S N))) with (/ Rsqr (INR (fact (S N0)))).
rewrite H5; rewrite div2_double.
right; reflexivity.
unfold Rsqr, C, Rdiv.
repeat rewrite Rinv_mult.
replace (S N - S N0)%nat with (S N0).
rewrite (Rmult_comm (INR (fact (S N)))).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply INR_fact_neq_0.
replace (S N) with (S N0 + S N0)%nat.
symmetry; apply Nat.add_sub.
rewrite H5; ring.
rewrite H4; ring.
unfold C, Rdiv.
rewrite (Rmult_comm (INR (fact (S N)))).
rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; rewrite Rinv_mult.
reflexivity.
apply INR_fact_neq_0.
unfold maj_Reste_E.
unfold Rdiv; rewrite (Rmult_comm 4).
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
apply RmaxLess1.
apply Rle_trans with
(sum_f_R0 (fun k:nat => INR (N - k) * / Rsqr (INR (fact (Nat.div2 (S N)))))
(pred N)).
apply sum_Rle; intros.
rewrite sum_cte.
replace (S (pred (N - n))) with (N - n)%nat.
right; apply Rmult_comm.
symmetry; apply Nat.lt_succ_pred with 0%nat.
apply Nat.add_lt_mono_l with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
replace (n + 0)%nat with n; [ idtac | ring ].
apply Nat.le_lt_trans with (pred N).
apply H0.
apply Nat.lt_pred_l.
apply Nat.neq_0_lt_0.
apply H.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
apply Rle_trans with
(sum_f_R0 (fun k:nat => INR N * / Rsqr (INR (fact (Nat.div2 (S N))))) (pred N)).
apply sum_Rle; intros.
do 2 rewrite <- (Rmult_comm (/ Rsqr (INR (fact (Nat.div2 (S N)))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt.
apply INR_fact_neq_0.
apply le_INR.
apply (fun p n m:nat => Nat.add_le_mono_l n m p) with n.
rewrite (Nat.add_comm _ (N - n)), Nat.sub_add.
rewrite Nat.add_comm; apply Nat.le_add_r.
apply Nat.le_trans with (pred N).
apply H0.
apply Nat.le_pred_l.
rewrite sum_cte; replace (S (pred N)) with N.
cut (Nat.div2 (S N) = S (Nat.div2 (pred N))).
intro; rewrite H0.
rewrite fact_simpl; rewrite Nat.mul_comm; rewrite mult_INR; rewrite Rsqr_mult.
rewrite Rinv_mult.
rewrite (Rmult_comm (INR N)); repeat rewrite Rmult_assoc;
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; apply INR_fact_neq_0.
rewrite <- H0.
cut (INR N <= INR (2 * Nat.div2 (S N))).
intro; apply Rmult_le_reg_l with (Rsqr (INR (Nat.div2 (S N)))).
apply Rsqr_pos_lt.
apply not_O_INR; red; intro.
cut (1 < S N)%nat.
intro; assert (H4 := div2_not_R0 _ H3).
rewrite H2 in H4; elim (Nat.nlt_0_r _ H4).
apply -> Nat.succ_lt_mono; apply H.
repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
change 4 with (Rsqr 2).
rewrite <- Rsqr_mult.
apply Rsqr_incr_1.
change 2 with (INR 2).
rewrite Rmult_comm, <- mult_INR; apply H1.
left; apply lt_INR_0; apply H.
left; apply Rmult_lt_0_compat.
apply lt_INR_0; apply div2_not_R0.
apply -> Nat.succ_lt_mono; apply H.
now apply IZR_lt.
cut (1 < S N)%nat.
intro; unfold Rsqr; apply prod_neq_R0; apply not_O_INR; intro;
assert (H4 := div2_not_R0 _ H2); rewrite H3 in H4;
elim (Nat.nlt_0_r _ H4).
apply -> Nat.succ_lt_mono; apply H.
assert (H1 := even_odd_cor N).
elim H1; intros N0 H2.
elim H2; intro.
pattern N at 2; rewrite H3.
rewrite div2_S_double.
right; rewrite H3; reflexivity.
pattern N at 2; rewrite H3.
replace (S (S (2 * N0))) with (2 * S N0)%nat.
rewrite div2_double.
rewrite H3.
rewrite S_INR; do 2 rewrite mult_INR.
rewrite (S_INR N0).
rewrite Rmult_plus_distr_l.
apply Rplus_le_compat_l.
rewrite Rmult_1_r.
simpl.
pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
ring.
assert (H0 := even_odd_cor N).
elim H0; intros N0 H1.
elim H1; intro.
cut (0 < N0)%nat.
intro; rewrite H2.
rewrite div2_S_double.
replace (2 * N0)%nat with (S (S (2 * pred N0))).
replace (pred (S (S (2 * pred N0)))) with (S (2 * pred N0)).
rewrite div2_S_double.
symmetry; apply Nat.lt_succ_pred with 0%nat; apply H3.
reflexivity.
lia.
lia.
rewrite H2.
replace (pred (S (2 * N0))) with (2 * N0)%nat; [ idtac | reflexivity ].
replace (S (S (2 * N0))) with (2 * S N0)%nat.
do 2 rewrite div2_double.
reflexivity.
ring.
symmetry; apply Nat.lt_succ_pred with 0%nat; apply H.
Qed.
Lemma maj_Reste_cv_R0 : forall x y:R, Un_cv (maj_Reste_E x y) 0.
Proof.
intros; assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold Un_cv; intros.
cut (0 < eps / 4);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H _ H1); intros N0 H2.
exists (max (2 * S N0) 2); intros.
unfold R_dist in H2; unfold R_dist; rewrite Rminus_0_r;
unfold Majxy in H2; unfold maj_Reste_E.
rewrite Rabs_right.
apply Rle_lt_trans with
(4 *
(Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (pred n))) /
INR (fact (Nat.div2 (pred n))))).
apply Rmult_le_compat_l.
left; prove_sup0.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
rewrite (Rmult_comm (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)));
rewrite
(Rmult_comm (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (pred n)))))
; rewrite Rmult_assoc; apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_trans with (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)).
rewrite Rmult_comm;
pattern (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)) at 2;
rewrite <- Rmult_1_r; apply Rmult_le_compat_l.
apply pow_le; apply Rle_trans with 1.
left; apply Rlt_0_1.
apply RmaxLess1.
apply Rmult_le_reg_l with (INR (fact (Nat.div2 (pred n)))).
apply INR_fact_lt_0.
rewrite Rmult_1_r; rewrite <- Rinv_r_sym.
apply (le_INR 1).
apply Nat.le_succ_l.
apply INR_lt.
apply INR_fact_lt_0.
apply INR_fact_neq_0.
apply Rle_pow.
apply RmaxLess1.
assert (H4 := even_odd_cor n).
elim H4; intros N1 H5.
elim H5; intro.
cut (0 < N1)%nat.
intro.
rewrite H6.
replace (pred (2 * N1)) with (S (2 * pred N1)).
rewrite div2_S_double.
lia.
lia.
assert (0 < n)%nat.
apply Nat.lt_le_trans with 2%nat.
apply Nat.lt_0_succ.
apply Nat.le_trans with (max (2 * S N0) 2).
apply Nat.le_max_r.
apply H3.
lia.
rewrite H6.
replace (pred (S (2 * N1))) with (2 * N1)%nat.
rewrite div2_double.
replace (4 * S N1)%nat with (2 * (2 * S N1))%nat.
apply (fun m n p:nat => Nat.mul_le_mono_nonneg_l p n m). apply Nat.le_0_l.
replace (2 * S N1)%nat with (S (S (2 * N1))).
apply Nat.le_succ_diag_r.
ring.
ring.
reflexivity.
apply Rmult_lt_reg_l with (/ 4).
apply Rinv_0_lt_compat; prove_sup0.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite Rmult_comm.
replace
(Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (pred n))) /
INR (fact (Nat.div2 (pred n)))) with
(Rabs
(Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (pred n))) /
INR (fact (Nat.div2 (pred n))) - 0)).
apply H2; unfold ge.
cut (2 * S N0 <= n)%nat.
intro; apply le_S_n.
apply INR_le; apply Rmult_le_reg_l with (INR 2).
simpl; prove_sup0.
do 2 rewrite <- mult_INR; apply le_INR.
apply Nat.le_trans with n.
apply H4.
assert (H5 := even_odd_cor n).
elim H5; intros N1 H6.
elim H6; intro.
cut (0 < N1)%nat.
intro.
rewrite H7.
apply (fun m n p:nat => Nat.mul_le_mono_nonneg_l p n m). apply Nat.le_0_l.
replace (pred (2 * N1)) with (S (2 * pred N1)).
rewrite div2_S_double.
replace (S (pred N1)) with N1.
apply le_n.
symmetry; apply Nat.lt_succ_pred with 0%nat; apply H8.
replace (2 * N1)%nat with (S (S (2 * pred N1))).
reflexivity.
pattern N1 at 2; replace N1 with (S (pred N1)).
ring.
apply Nat.lt_succ_pred with 0%nat; apply H8.
apply INR_lt.
apply Rmult_lt_reg_l with (INR 2).
simpl; prove_sup0.
rewrite Rmult_0_r; rewrite <- mult_INR.
apply lt_INR_0.
rewrite <- H7.
apply Nat.lt_le_trans with 2%nat.
apply Nat.lt_0_succ.
apply Nat.le_trans with (max (2 * S N0) 2).
apply Nat.le_max_r.
apply H3.
rewrite H7.
replace (pred (S (2 * N1))) with (2 * N1)%nat.
rewrite div2_double.
replace (2 * S N1)%nat with (S (S (2 * N1))).
apply Nat.le_succ_diag_r.
ring.
reflexivity.
apply Nat.le_trans with (max (2 * S N0) 2).
apply Nat.le_max_l.
apply H3.
rewrite Rminus_0_r; apply Rabs_right.
apply Rle_ge.
unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
apply RmaxLess1.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
discrR.
apply Rle_ge.
unfold Rdiv; apply Rmult_le_pos.
left; prove_sup0.
apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
apply RmaxLess1.
left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; apply INR_fact_neq_0.
Qed.
(**********)
Lemma Reste_E_cv : forall x y:R, Un_cv (Reste_E x y) 0.
Proof.
intros; assert (H := maj_Reste_cv_R0 x y).
unfold Un_cv in H; unfold Un_cv; intros; elim (H _ H0); intros.
exists (max x0 1); intros.
unfold R_dist; rewrite Rminus_0_r.
apply Rle_lt_trans with (maj_Reste_E x y n).
apply Reste_E_maj.
apply Nat.lt_le_trans with 1%nat.
apply Nat.lt_0_succ.
apply Nat.le_trans with (max x0 1).
apply Nat.le_max_r.
apply H2.
replace (maj_Reste_E x y n) with (R_dist (maj_Reste_E x y n) 0).
apply H1.
unfold ge; apply Nat.le_trans with (max x0 1).
apply Nat.le_max_l.
apply H2.
unfold R_dist; rewrite Rminus_0_r; apply Rabs_right.
apply Rle_ge; apply Rle_trans with (Rabs (Reste_E x y n)).
apply Rabs_pos.
apply Reste_E_maj.
apply Nat.lt_le_trans with 1%nat.
apply Nat.lt_0_succ.
apply Nat.le_trans with (max x0 1).
apply Nat.le_max_r.
apply H2.
Qed.
(**********)
Lemma exp_plus : forall x y:R, exp (x + y) = exp x * exp y.
Proof.
intros; assert (H0 := E1_cvg x).
assert (H := E1_cvg y).
assert (H1 := E1_cvg (x + y)).
eapply UL_sequence.
apply H1.
assert (H2 := CV_mult _ _ _ _ H0 H).
assert (H3 := CV_minus _ _ _ _ H2 (Reste_E_cv x y)).
unfold Un_cv; unfold Un_cv in H3; intros.
elim (H3 _ H4); intros.
exists (S x0); intros.
rewrite <- (exp_form x y n).
rewrite Rminus_0_r in H5.
apply H5.
unfold ge; apply Nat.le_trans with (S x0).
apply Nat.le_succ_diag_r.
apply H6.
apply Nat.lt_le_trans with (S x0).
apply Nat.lt_0_succ.
apply H6.
Qed.
(**********)
Lemma exp_pos_pos : forall x:R, 0 < x -> 0 < exp x.
Proof.
intros; set (An := fun N:nat => / INR (fact N) * x ^ N).
cut (Un_cv (fun n:nat => sum_f_R0 An n) (exp x)).
intro; apply Rlt_le_trans with (sum_f_R0 An 0).
unfold An; simpl; rewrite Rinv_1; rewrite Rmult_1_r;
apply Rlt_0_1.
apply sum_incr.
assumption.
intro; unfold An; left; apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply (pow_lt _ n H).
unfold exp; unfold projT1; case (exist_exp x); intro.
unfold exp_in; unfold infinite_sum, Un_cv; trivial.
Qed.
(**********)
Lemma exp_pos : forall x:R, 0 < exp x.
Proof.
intro; destruct (total_order_T 0 x) as [[Hlt|<-]|Hgt].
apply (exp_pos_pos _ Hlt).
rewrite exp_0; apply Rlt_0_1.
replace (exp x) with (1 / exp (- x)).
unfold Rdiv; apply Rmult_lt_0_compat.
apply Rlt_0_1.
apply Rinv_0_lt_compat; apply exp_pos_pos.
apply (Ropp_0_gt_lt_contravar _ Hgt).
cut (exp (- x) <> 0).
intro; unfold Rdiv; apply Rmult_eq_reg_l with (exp (- x)).
rewrite Rmult_1_l; rewrite <- Rinv_r_sym.
rewrite <- exp_plus.
rewrite Rplus_opp_l; rewrite exp_0; reflexivity.
apply H.
apply H.
assert (H := exp_plus x (- x)).
rewrite Rplus_opp_r in H; rewrite exp_0 in H.
red; intro; rewrite H0 in H.
rewrite Rmult_0_r in H.
elim R1_neq_R0; assumption.
Qed.
(* ((exp h)-1)/h -> 0 quand h->0 *)
Lemma derivable_pt_lim_exp_0 : derivable_pt_lim exp 0 1.
Proof.
unfold derivable_pt_lim; intros.
set (fn := fun (N:nat) (x:R) => x ^ N / INR (fact (S N))).
cut (CVN_R fn).
intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv; cut (forall n:nat, continuity (fn n)).
intro; cut (continuity (SFL fn cv)).
intro; unfold continuity in H1.
assert (H2 := H1 0).
unfold continuity_pt in H2; unfold continue_in in H2; unfold limit1_in in H2;
unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
elim (H2 _ H); intros alp H3.
elim H3; intros.
exists (mkposreal _ H4); intros.
rewrite Rplus_0_l; rewrite exp_0.
replace ((exp h - 1) / h) with (SFL fn cv h).
replace 1 with (SFL fn cv 0).
apply H5.
split.
unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym H6).
rewrite Rminus_0_r; apply H7.
unfold SFL.
case (cv 0) as (x,Hu).
eapply UL_sequence.
apply Hu.
unfold Un_cv, SP in |- *.
intros; exists 1%nat; intros.
unfold R_dist; rewrite decomp_sum.
rewrite (Rplus_comm (fn 0%nat 0)).
replace (fn 0%nat 0) with 1.
unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_r.
replace (sum_f_R0 (fun i:nat => fn (S i) 0) (pred n)) with 0.
rewrite Rabs_R0; apply H8.
symmetry ; apply sum_eq_R0; intros.
unfold fn.
simpl.
unfold Rdiv; do 2 rewrite Rmult_0_l; reflexivity.
unfold fn; simpl.
unfold Rdiv; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply Nat.lt_le_trans with 1%nat; [ apply Nat.lt_succ_diag_r | apply H9 ].
unfold SFL, exp.
case (cv h) as (x0,Hu); case (exist_exp h) as (x,Hexp); simpl.
eapply UL_sequence.
apply Hu.
unfold Un_cv; intros.
unfold exp_in, infinite_sum in Hexp.
cut (0 < eps0 * Rabs h).
intro; elim (Hexp _ H9); intros N0 H10.
exists N0; intros.
unfold R_dist.
apply Rmult_lt_reg_l with (Rabs h).
apply Rabs_pos_lt; assumption.
rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
replace (h * ((x - 1) / h)) with (x - 1).
unfold R_dist in H10.
replace (h * SP fn n h - (x - 1)) with
(sum_f_R0 (fun i:nat => / INR (fact i) * h ^ i) (S n) - x).
rewrite (Rmult_comm (Rabs h)).
apply H10.
unfold ge.
apply Nat.le_trans with (S N0).
apply Nat.le_succ_diag_r.
apply -> Nat.succ_le_mono; apply H11.
rewrite decomp_sum.
replace (/ INR (fact 0) * h ^ 0) with 1.
unfold Rminus.
rewrite Ropp_plus_distr.
rewrite Ropp_involutive.
rewrite <- (Rplus_comm (- x)).
rewrite <- (Rplus_comm (- x + 1)).
rewrite Rplus_assoc; repeat apply Rplus_eq_compat_l.
replace (pred (S n)) with n; [ idtac | reflexivity ].
unfold SP.
rewrite scal_sum.
apply sum_eq; intros.
unfold fn.
replace (h ^ S i) with (h * h ^ i).
unfold Rdiv; ring.
simpl; ring.
simpl; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply Nat.lt_0_succ.
unfold Rdiv.
rewrite <- Rmult_assoc.
symmetry ; apply Rinv_r_simpl_m.
assumption.
apply Rmult_lt_0_compat.
apply H8.
apply Rabs_pos_lt; assumption.
apply SFL_continuity; assumption.
intro; unfold fn.
replace (fun x:R => x ^ n / INR (fact (S n))) with
(pow_fct n / fct_cte (INR (fact (S n))))%F; [ idtac | reflexivity ].
apply continuity_div.
apply derivable_continuous; apply (derivable_pow n).
apply derivable_continuous; apply derivable_const.
intro; unfold fct_cte; apply INR_fact_neq_0.
apply (CVN_R_CVS _ X).
assert (H0 := Alembert_exp).
unfold CVN_R.
intro; unfold CVN_r.
exists (fun N:nat => r ^ N / INR (fact (S N))).
cut
{ l:R |
Un_cv
(fun n:nat =>
sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l }.
intros (x,p).
exists x; intros.
split.
apply p.
unfold Boule; intros.
rewrite Rminus_0_r in H1.
unfold fn.
unfold Rdiv; rewrite Rabs_mult.
cut (0 < INR (fact (S n))).
intro.
rewrite (Rabs_right (/ INR (fact (S n)))).
do 2 rewrite <- (Rmult_comm (/ INR (fact (S n)))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply H2.
rewrite <- RPow_abs.
apply pow_maj_Rabs.
rewrite Rabs_Rabsolu; left; apply H1.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply H2.
apply INR_fact_lt_0.
cut ((r:R) <> 0).
intro; apply Alembert_C2.
intro; apply Rabs_no_R0.
unfold Rdiv; apply prod_neq_R0.
apply pow_nonzero; assumption.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
unfold Un_cv in H0.
unfold Un_cv; intros.
cut (0 < eps0 / r);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply (cond_pos r) ] ].
elim (H0 _ H3); intros N0 H4.
exists N0; intros.
cut (S n >= N0)%nat.
intro hyp_sn.
assert (H6 := H4 _ hyp_sn).
unfold R_dist in H6; rewrite Rminus_0_r in H6.
rewrite Rabs_Rabsolu in H6.
unfold R_dist; rewrite Rminus_0_r.
rewrite Rabs_Rabsolu.
replace
(Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))
with (r * / INR (fact (S (S n))) * / / INR (fact (S n))).
rewrite Rmult_assoc; rewrite Rabs_mult.
rewrite (Rabs_right r).
apply Rmult_lt_reg_l with (/ r).
apply Rinv_0_lt_compat; apply (cond_pos r).
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps0).
apply H6.
assumption.
apply Rle_ge; left; apply (cond_pos r).
unfold Rdiv.
repeat rewrite Rabs_mult.
repeat rewrite Rabs_inv.
rewrite Rinv_mult.
repeat rewrite Rabs_right.
rewrite Rinv_inv.
rewrite (Rmult_comm r).
rewrite (Rmult_comm (r ^ S n)).
repeat rewrite Rmult_assoc.
apply Rmult_eq_compat_l.
rewrite (Rmult_comm r).
rewrite <- Rmult_assoc; rewrite <- (Rmult_comm (INR (fact (S n)))).
apply Rmult_eq_compat_l.
simpl.
rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
ring.
apply pow_nonzero; assumption.
apply Rle_ge; left; apply INR_fact_lt_0.
apply Rle_ge; left; apply pow_lt; apply (cond_pos r).
apply Rle_ge; left; apply INR_fact_lt_0.
apply Rle_ge; left; apply pow_lt; apply (cond_pos r).
unfold ge; apply Nat.le_trans with n.
apply H5.
apply Nat.le_succ_diag_r.
assert (H1 := cond_pos r); red; intro; rewrite H2 in H1;
elim (Rlt_irrefl _ H1).
Qed.
(**********)
Lemma derivable_pt_lim_exp : forall x:R, derivable_pt_lim exp x (exp x).
Proof.
intro; assert (H0 := derivable_pt_lim_exp_0).
unfold derivable_pt_lim in H0; unfold derivable_pt_lim; intros.
cut (0 < eps / exp x);
[ intro
| unfold Rdiv; apply Rmult_lt_0_compat;
[ apply H | apply Rinv_0_lt_compat; apply exp_pos ] ].
elim (H0 _ H1); intros del H2.
exists del; intros.
assert (H5 := H2 _ H3 H4).
rewrite Rplus_0_l in H5; rewrite exp_0 in H5.
replace ((exp (x + h) - exp x) / h - exp x) with
(exp x * ((exp h - 1) / h - 1)).
rewrite Rabs_mult; rewrite (Rabs_right (exp x)).
apply Rmult_lt_reg_l with (/ exp x).
apply Rinv_0_lt_compat; apply exp_pos.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps).
apply H5.
assert (H6 := exp_pos x); red; intro; rewrite H7 in H6;
elim (Rlt_irrefl _ H6).
apply Rle_ge; left; apply exp_pos.
rewrite Rmult_minus_distr_l.
rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rmult_assoc;
rewrite Rmult_minus_distr_l.
rewrite Rmult_1_r; rewrite exp_plus; reflexivity.
Qed.
(* TODO #14736 for compatibility only, should be removed after deprecation *)
Require Import Div2 Even Max.
|