1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Lia.
Require Import Lra.
Require Import Rbase.
Require Import Rtrigo1.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import AltSeries.
Require Import Rseries.
Require Import SeqProp.
Require Import PartSum.
Require Import Ratan.
Local Open Scope R_scope.
(* Proving a few formulas in the style of John Machin to compute Pi *)
Definition atan_sub u v := (u - v)/(1 + u * v).
Lemma atan_sub_correct :
forall u v, 1 + u * v <> 0 -> -PI/2 < atan u - atan v < PI/2 ->
-PI/2 < atan (atan_sub u v) < PI/2 ->
atan u = atan v + atan (atan_sub u v).
Proof.
intros u v pn0 uvint aint.
assert (cos (atan u) <> 0).
destruct (atan_bound u); apply Rgt_not_eq, cos_gt_0; auto.
rewrite <- Ropp_div; assumption.
assert (cos (atan v) <> 0).
destruct (atan_bound v); apply Rgt_not_eq, cos_gt_0; auto.
rewrite <- Ropp_div; assumption.
assert (t : forall a b c, a - b = c -> a = b + c) by (intros; subst; field).
apply t, tan_inj; clear t; try assumption.
rewrite tan_minus; auto.
rewrite !tan_atan; reflexivity.
apply Rgt_not_eq, cos_gt_0; rewrite <- ?Ropp_div; tauto.
rewrite !tan_atan; assumption.
Qed.
Lemma tech : forall x y , -1 <= x <= 1 -> -1 < y < 1 ->
-PI/2 < atan x - atan y < PI/2.
Proof.
assert (ut := PI_RGT_0).
intros x y [xm1 x1] [ym1 y1].
assert (-(PI/4) <= atan x).
destruct xm1 as [xm1 | xm1].
rewrite <- atan_1, <- atan_opp; apply Rlt_le, atan_increasing.
assumption.
solve[rewrite <- xm1; change (-1) with (-(1)); rewrite atan_opp, atan_1; apply Rle_refl].
assert (-(PI/4) < atan y).
rewrite <- atan_1, <- atan_opp; apply atan_increasing.
assumption.
assert (atan x <= PI/4).
destruct x1 as [x1 | x1].
rewrite <- atan_1; apply Rlt_le, atan_increasing.
assumption.
solve[rewrite x1, atan_1; apply Rle_refl].
assert (atan y < PI/4).
rewrite <- atan_1; apply atan_increasing.
assumption.
rewrite Ropp_div; split; lra.
Qed.
(* A simple formula, reasonably efficient. *)
Lemma Machin_2_3 : PI/4 = atan(/2) + atan(/3).
Proof.
assert (utility : 0 < PI/2) by (apply PI2_RGT_0).
rewrite <- atan_1.
rewrite (atan_sub_correct 1 (/2)).
apply f_equal, f_equal; unfold atan_sub; field.
apply Rgt_not_eq; lra.
apply tech; try split; try lra.
apply atan_bound.
Qed.
Lemma Machin_4_5_239 : PI/4 = 4 * atan (/5) - atan(/239).
Proof.
rewrite <- atan_1.
rewrite (atan_sub_correct 1 (/5));
[ | apply Rgt_not_eq; lra | apply tech; try split; lra |
apply atan_bound ].
replace (4 * atan (/5) - atan (/239)) with
(atan (/5) + (atan (/5) + (atan (/5) + (atan (/5) + -
atan (/239))))) by ring.
apply f_equal.
replace (atan_sub 1 (/5)) with (2/3) by
(unfold atan_sub; field).
rewrite (atan_sub_correct (2/3) (/5));
[apply f_equal | apply Rgt_not_eq; lra | apply tech; try split; lra |
apply atan_bound ].
replace (atan_sub (2/3) (/5)) with (7/17) by
(unfold atan_sub; field).
rewrite (atan_sub_correct (7/17) (/5));
[apply f_equal | apply Rgt_not_eq; lra | apply tech; try split; lra |
apply atan_bound ].
replace (atan_sub (7/17) (/5)) with (9/46) by
(unfold atan_sub; field).
rewrite (atan_sub_correct (9/46) (/5));
[apply f_equal | apply Rgt_not_eq; lra | apply tech; try split; lra |
apply atan_bound ].
rewrite <- atan_opp; apply f_equal.
unfold atan_sub; field.
Qed.
Lemma Machin_2_3_7 : PI/4 = 2 * atan(/3) + (atan (/7)).
Proof.
rewrite <- atan_1.
rewrite (atan_sub_correct 1 (/3));
[ | apply Rgt_not_eq; lra | apply tech; try split; lra |
apply atan_bound ].
replace (2 * atan (/3) + atan (/7)) with
(atan (/3) + (atan (/3) + atan (/7))) by ring.
apply f_equal.
replace (atan_sub 1 (/3)) with (/2) by
(unfold atan_sub; field).
rewrite (atan_sub_correct (/2) (/3));
[apply f_equal | apply Rgt_not_eq; lra | apply tech; try split; lra |
apply atan_bound ].
apply f_equal; unfold atan_sub; field.
Qed.
(* More efficient way to compute approximations of PI. *)
Definition PI_2_3_7_tg n :=
2 * Ratan_seq (/3) n + Ratan_seq (/7) n.
Lemma PI_2_3_7_ineq :
forall N : nat,
sum_f_R0 (tg_alt PI_2_3_7_tg) (S (2 * N)) <= PI / 4 <=
sum_f_R0 (tg_alt PI_2_3_7_tg) (2 * N).
Proof.
assert (dec3 : 0 <= /3 <= 1) by (split; lra).
assert (dec7 : 0 <= /7 <= 1) by (split; lra).
assert (decr : Un_decreasing PI_2_3_7_tg).
apply Ratan_seq_decreasing in dec3.
apply Ratan_seq_decreasing in dec7.
intros n; apply Rplus_le_compat.
apply Rmult_le_compat_l; [ lra | exact (dec3 n)].
exact (dec7 n).
assert (cv : Un_cv PI_2_3_7_tg 0).
apply Ratan_seq_converging in dec3.
apply Ratan_seq_converging in dec7.
intros eps ep.
assert (ep' : 0 < eps /3) by lra.
destruct (dec3 _ ep') as [N1 Pn1]; destruct (dec7 _ ep') as [N2 Pn2].
exists (N1 + N2)%nat; intros n Nn.
unfold PI_2_3_7_tg.
rewrite <- (Rplus_0_l 0).
apply Rle_lt_trans with
(1 := R_dist_plus (2 * Ratan_seq (/3) n) 0 (Ratan_seq (/7) n) 0).
replace eps with (2 * eps/3 + eps/3) by field.
apply Rplus_lt_compat.
unfold R_dist, Rminus, Rdiv.
rewrite <- (Rmult_0_r 2), <- Ropp_mult_distr_r_reverse.
rewrite <- Rmult_plus_distr_l, Rabs_mult, (Rabs_pos_eq 2);[|lra].
rewrite Rmult_assoc; apply Rmult_lt_compat_l;[lra | ].
apply (Pn1 n); lia.
apply (Pn2 n); lia.
rewrite Machin_2_3_7.
rewrite !atan_eq_ps_atan; try (split; lra).
unfold ps_atan; destruct (in_int (/3)); destruct (in_int (/7));
try match goal with id : ~ _ |- _ => case id; split; lra end.
destruct (ps_atan_exists_1 (/3)) as [v3 Pv3].
destruct (ps_atan_exists_1 (/7)) as [v7 Pv7].
assert (main : Un_cv (sum_f_R0 (tg_alt PI_2_3_7_tg)) (2 * v3 + v7)).
assert (main :Un_cv (fun n => 2 * sum_f_R0 (tg_alt (Ratan_seq (/3))) n +
sum_f_R0 (tg_alt (Ratan_seq (/7))) n) (2 * v3 + v7)).
apply CV_plus;[ | assumption].
apply CV_mult;[ | assumption].
exists 0%nat; intros; rewrite R_dist_eq; assumption.
apply Un_cv_ext with (2 := main).
intros n; rewrite scal_sum, <- plus_sum; apply sum_eq; intros.
rewrite Rmult_comm; unfold PI_2_3_7_tg, tg_alt; field.
intros N; apply (alternated_series_ineq _ _ _ decr cv main).
Qed.
|