1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import Rcomplete.
Local Open Scope R_scope.
Lemma tech1 :
forall (An:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N.
Proof.
intros; induction N as [| N HrecN].
simpl; apply H; apply le_n.
simpl; apply Rplus_lt_0_compat.
apply HrecN; intros; apply H; apply le_S; assumption.
apply H; apply le_n.
Qed.
(* Chasles' relation *)
Lemma tech2 :
forall (An:nat -> R) (m n:nat),
(m < n)%nat ->
sum_f_R0 An n =
sum_f_R0 An m + sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m).
Proof.
intros; induction n as [| n Hrecn].
elim (Nat.nlt_0_r _ H).
cut ((m < n)%nat \/ m = n).
intro; elim H0; intro.
replace (sum_f_R0 An (S n)) with (sum_f_R0 An n + An (S n));
[ idtac | reflexivity ].
replace (S n - S m)%nat with (S (n - S m)).
replace (sum_f_R0 (fun i:nat => An (S m + i)%nat) (S (n - S m))) with
(sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m) +
An (S m + S (n - S m))%nat); [ idtac | reflexivity ].
replace (S m + S (n - S m))%nat with (S n).
rewrite (Hrecn H1).
ring.
apply INR_eq; rewrite S_INR; rewrite plus_INR; do 2 rewrite S_INR;
rewrite minus_INR.
rewrite S_INR; ring.
apply Nat.le_succ_l; assumption.
apply INR_eq; rewrite S_INR; repeat rewrite minus_INR.
repeat rewrite S_INR; ring.
apply le_n_S; apply Nat.lt_le_incl; assumption.
apply Nat.le_succ_l; assumption.
rewrite H1; rewrite Nat.sub_diag; simpl.
replace (n + 0)%nat with n; [ reflexivity | ring ].
inversion H.
right; reflexivity.
left; apply Nat.lt_le_trans with (S m); [ apply Nat.lt_succ_diag_r | assumption ].
Qed.
(* Sum of geometric sequences *)
Lemma tech3 :
forall (k:R) (N:nat),
k <> 1 -> sum_f_R0 (fun i:nat => k ^ i) N = (1 - k ^ S N) / (1 - k).
Proof.
intros; cut (1 - k <> 0).
intro; induction N as [| N HrecN].
simpl; rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym.
reflexivity.
apply H0.
replace (sum_f_R0 (fun i:nat => k ^ i) (S N)) with
(sum_f_R0 (fun i:nat => k ^ i) N + k ^ S N); [ idtac | reflexivity ];
rewrite HrecN;
replace ((1 - k ^ S N) / (1 - k) + k ^ S N) with
((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)).
apply Rmult_eq_reg_l with (1 - k).
unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ (1 - k)));
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ do 2 rewrite Rmult_1_l; simpl; ring | apply H0 ].
apply H0.
unfold Rdiv; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k));
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply H0.
apply Rminus_eq_contra; red; intro; elim H; symmetry ;
assumption.
Qed.
Lemma tech4 :
forall (An:nat -> R) (k:R) (N:nat),
0 <= k -> (forall i:nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ N.
Proof.
intros; induction N as [| N HrecN].
simpl; right; ring.
apply Rle_trans with (k * An N).
left; apply (H0 N).
replace (S N) with (N + 1)%nat; [ idtac | ring ].
rewrite pow_add; simpl; rewrite Rmult_1_r;
replace (An 0%nat * (k ^ N * k)) with (k * (An 0%nat * k ^ N));
[ idtac | ring ]; apply Rmult_le_compat_l.
assumption.
apply HrecN.
Qed.
Lemma tech5 :
forall (An:nat -> R) (N:nat), sum_f_R0 An (S N) = sum_f_R0 An N + An (S N).
Proof.
intros; reflexivity.
Qed.
Lemma tech6 :
forall (An:nat -> R) (k:R) (N:nat),
0 <= k ->
(forall i:nat, An (S i) < k * An i) ->
sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N.
Proof.
intros; induction N as [| N HrecN].
simpl; right; ring.
apply Rle_trans with (An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N + An (S N)).
rewrite tech5; do 2 rewrite <- (Rplus_comm (An (S N)));
apply Rplus_le_compat_l.
apply HrecN.
rewrite tech5; rewrite Rmult_plus_distr_l; apply Rplus_le_compat_l.
apply tech4; assumption.
Qed.
Lemma tech7 : forall r1 r2:R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2.
Proof.
intros; red; intro.
assert (H3 := Rmult_eq_compat_l r1 _ _ H2).
rewrite <- Rinv_r_sym in H3; [ idtac | assumption ].
assert (H4 := Rmult_eq_compat_l r2 _ _ H3).
rewrite Rmult_1_r in H4; rewrite <- Rmult_assoc in H4.
rewrite Rinv_r_simpl_m in H4; [ idtac | assumption ].
elim H1; symmetry ; assumption.
Qed.
Lemma tech11 :
forall (An Bn Cn:nat -> R) (N:nat),
(forall i:nat, An i = Bn i - Cn i) ->
sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn N.
Proof.
intros; induction N as [| N HrecN].
simpl; apply H.
do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring.
Qed.
Lemma tech12 :
forall (An:nat -> R) (x l:R),
Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l ->
Pser An x l.
Proof.
intros; unfold Pser; unfold infinite_sum; unfold Un_cv in H;
assumption.
Qed.
Lemma scal_sum :
forall (An:nat -> R) (N:nat) (x:R),
x * sum_f_R0 An N = sum_f_R0 (fun i:nat => An i * x) N.
Proof.
intros; induction N as [| N HrecN].
simpl; ring.
do 2 rewrite tech5.
rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring.
Qed.
Lemma decomp_sum :
forall (An:nat -> R) (N:nat),
(0 < N)%nat ->
sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i:nat => An (S i)) (pred N).
Proof.
intros; induction N as [| N HrecN].
elim (Nat.lt_irrefl _ H).
cut ((0 < N)%nat \/ N = 0%nat).
intro; elim H0; intro.
cut (S (pred N) = pred (S N)).
intro; rewrite <- H2.
do 2 rewrite tech5.
replace (S (S (pred N))) with (S N).
rewrite (HrecN H1); ring.
rewrite H2; simpl; reflexivity.
destruct (O_or_S N) as [(m,<-)|<-].
simpl; reflexivity.
elim (Nat.lt_irrefl _ H1).
rewrite H1; simpl; reflexivity.
inversion H.
right; reflexivity.
left; apply Nat.lt_le_trans with 1%nat; [ apply Nat.lt_0_succ | assumption ].
Qed.
Lemma plus_sum :
forall (An Bn:nat -> R) (N:nat),
sum_f_R0 (fun i:nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
Lemma sum_eq :
forall (An Bn:nat -> R) (N:nat),
(forall i:nat, (i <= N)%nat -> An i = Bn i) ->
sum_f_R0 An N = sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl; apply H; apply le_n.
do 2 rewrite tech5; rewrite HrecN.
rewrite (H (S N)); [ reflexivity | apply le_n ].
intros; apply H; apply Nat.le_trans with N; [ assumption | apply Nat.le_succ_diag_r ].
Qed.
(* Unicity of the limit defined by convergent series *)
Lemma uniqueness_sum :
forall (An:nat -> R) (l1 l2:R),
infinite_sum An l1 -> infinite_sum An l2 -> l1 = l2.
Proof.
unfold infinite_sum; intros.
case (Req_dec l1 l2); intro.
assumption.
cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ].
elim (H (Rabs ((l1 - l2) / 2)) H2); intros.
elim (H0 (Rabs ((l1 - l2) / 2)) H2); intros.
set (N := max x0 x); cut (N >= x0)%nat.
cut (N >= x)%nat.
intros; assert (H7 := H3 N H5); assert (H8 := H4 N H6).
cut (Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2).
intro; assert (H10 := Rplus_lt_compat _ _ _ _ H7 H8);
assert (H11 := Rle_lt_trans _ _ _ H9 H10); unfold Rdiv in H11;
rewrite Rabs_mult in H11.
cut (Rabs (/ 2) = / 2).
intro; rewrite H12 in H11; assert (H13 := double_var); unfold Rdiv in H13;
rewrite <- H13 in H11.
elim (Rlt_irrefl _ H11).
apply Rabs_right; left; change (0 < / 2); apply Rinv_0_lt_compat;
cut (0%nat <> 2%nat);
[ intro H20; generalize (lt_INR_0 2 (proj1 (Nat.neq_0_lt_0 2) (Nat.neq_sym 0 2 H20))); unfold INR;
intro; assumption
| discriminate ].
unfold R_dist; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1));
rewrite Ropp_minus_distr'.
replace (l1 - l2) with (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2));
[ idtac | ring ].
apply Rabs_triang.
unfold ge; unfold N; apply Nat.le_max_r.
unfold ge; unfold N; apply Nat.le_max_l.
unfold Rdiv; apply prod_neq_R0.
apply Rminus_eq_contra; assumption.
apply Rinv_neq_0_compat; discrR.
Qed.
Lemma minus_sum :
forall (An Bn:nat -> R) (N:nat),
sum_f_R0 (fun i:nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
Lemma sum_decomposition :
forall (An:nat -> R) (N:nat),
sum_f_R0 (fun l:nat => An (2 * l)%nat) (S N) +
sum_f_R0 (fun l:nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N).
Proof.
intros.
induction N as [| N HrecN].
simpl; ring.
rewrite tech5.
rewrite (tech5 (fun l:nat => An (S (2 * l))) N).
replace (2 * S (S N))%nat with (S (S (2 * S N))).
rewrite (tech5 An (S (2 * S N))).
rewrite (tech5 An (2 * S N)).
rewrite <- HrecN.
ring.
ring.
Qed.
Lemma sum_Rle :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> An n <= Bn n) ->
sum_f_R0 An N <= sum_f_R0 Bn N.
Proof.
intros.
induction N as [| N HrecN].
simpl; apply H.
apply le_n.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l.
apply H.
apply le_n.
do 2 rewrite <- (Rplus_comm (Bn (S N))).
apply Rplus_le_compat_l.
apply HrecN.
intros; apply H.
apply Nat.le_trans with N; [ assumption | apply Nat.le_succ_diag_r ].
Qed.
Lemma Rsum_abs :
forall (An:nat -> R) (N:nat),
Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l:nat => Rabs (An l)) N.
Proof.
intros.
induction N as [| N HrecN].
simpl.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
apply Rabs_triang.
do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
apply Rplus_le_compat_l.
apply HrecN.
Qed.
Lemma sum_cte :
forall (x:R) (N:nat), sum_f_R0 (fun _:nat => x) N = x * INR (S N).
Proof.
intros.
induction N as [| N HrecN].
simpl; ring.
rewrite tech5.
rewrite HrecN; repeat rewrite S_INR; ring.
Qed.
(**********)
Lemma sum_growing :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn N.
Proof.
intros.
induction N as [| N HrecN].
simpl; apply H.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l; apply H.
do 2 rewrite <- (Rplus_comm (Bn (S N))).
apply Rplus_le_compat_l; apply HrecN.
Qed.
(**********)
Lemma Rabs_triang_gen :
forall (An:nat -> R) (N:nat),
Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i:nat => Rabs (An i)) N.
Proof.
intros.
induction N as [| N HrecN].
simpl.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
apply Rabs_triang.
do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
apply Rplus_le_compat_l; apply HrecN.
Qed.
(**********)
Lemma cond_pos_sum :
forall (An:nat -> R) (N:nat),
(forall n:nat, 0 <= An n) -> 0 <= sum_f_R0 An N.
Proof.
intros.
induction N as [| N HrecN].
simpl; apply H.
rewrite tech5.
apply Rplus_le_le_0_compat.
apply HrecN.
apply H.
Qed.
(* Cauchy's criterion for series *)
Definition Cauchy_crit_series (An:nat -> R) : Prop :=
Cauchy_crit (fun N:nat => sum_f_R0 An N).
(* If (|An|) satisfies the Cauchy's criterion for series, then (An) too *)
Lemma cauchy_abs :
forall An:nat -> R,
Cauchy_crit_series (fun i:nat => Rabs (An i)) -> Cauchy_crit_series An.
Proof.
unfold Cauchy_crit_series; unfold Cauchy_crit.
intros.
elim (H eps H0); intros.
exists x.
intros.
cut
(R_dist (sum_f_R0 An n) (sum_f_R0 An m) <=
R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
(sum_f_R0 (fun i:nat => Rabs (An i)) m)).
intro.
apply Rle_lt_trans with
(R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
(sum_f_R0 (fun i:nat => Rabs (An i)) m)).
assumption.
apply H1; assumption.
destruct (lt_eq_lt_dec n m) as [[ | -> ]|].
rewrite (tech2 An n m); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) n m); [ idtac | assumption ].
unfold R_dist.
unfold Rminus.
do 2 rewrite Ropp_plus_distr.
do 2 rewrite <- Rplus_assoc.
do 2 rewrite Rplus_opp_r.
do 2 rewrite Rplus_0_l.
do 2 rewrite Rabs_Ropp.
rewrite
(Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S n + i)%nat)) (m - S n)))
.
set (Bn := fun i:nat => An (S n + i)%nat).
replace (fun i:nat => Rabs (An (S n + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
unfold Bn; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
unfold R_dist.
unfold Rminus; do 2 rewrite Rplus_opp_r.
rewrite Rabs_R0; right; reflexivity.
rewrite (tech2 An m n); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) m n); [ idtac | assumption ].
unfold R_dist.
unfold Rminus.
do 2 rewrite Rplus_assoc.
rewrite (Rplus_comm (sum_f_R0 An m)).
rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
do 2 rewrite Rplus_assoc.
do 2 rewrite Rplus_opp_l.
do 2 rewrite Rplus_0_r.
rewrite
(Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S m + i)%nat)) (n - S m)))
.
set (Bn := fun i:nat => An (S m + i)%nat).
replace (fun i:nat => Rabs (An (S m + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
unfold Bn; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
Qed.
(**********)
Lemma cv_cauchy_1 :
forall An:nat -> R,
{ l:R | Un_cv (fun N:nat => sum_f_R0 An N) l } ->
Cauchy_crit_series An.
Proof.
intros An (x,p).
unfold Un_cv in p.
unfold Cauchy_crit_series; unfold Cauchy_crit.
intros.
cut (0 < eps / 2).
intro.
elim (p (eps / 2) H0); intros.
exists x0.
intros.
apply Rle_lt_trans with (R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x).
unfold R_dist.
replace (sum_f_R0 An n - sum_f_R0 An m) with
(sum_f_R0 An n - x + - (sum_f_R0 An m - x)); [ idtac | ring ].
rewrite <- (Rabs_Ropp (sum_f_R0 An m - x)).
apply Rabs_triang.
apply Rlt_le_trans with (eps / 2 + eps / 2).
apply Rplus_lt_compat.
apply H1; assumption.
apply H1; assumption.
right; symmetry ; apply double_var.
unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Lemma cv_cauchy_2 :
forall An:nat -> R,
Cauchy_crit_series An ->
{ l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros.
apply R_complete.
unfold Cauchy_crit_series in H.
exact H.
Qed.
(**********)
Lemma sum_eq_R0 :
forall (An:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0.
Proof.
intros; induction N as [| N HrecN].
simpl; apply H; apply le_n.
rewrite tech5; rewrite HrecN;
[ rewrite Rplus_0_l; apply H; apply le_n
| intros; apply H; apply Nat.le_trans with N; [ assumption | apply Nat.le_succ_diag_r ] ].
Qed.
Definition SP (fn:nat -> R -> R) (N:nat) (x:R) : R :=
sum_f_R0 (fun k:nat => fn k x) N.
(**********)
Lemma sum_incr :
forall (An:nat -> R) (N:nat) (l:R),
Un_cv (fun n:nat => sum_f_R0 An n) l ->
(forall n:nat, 0 <= An n) -> sum_f_R0 An N <= l.
Proof.
intros; destruct (total_order_T (sum_f_R0 An N) l) as [[Hlt|Heq]|Hgt].
left; apply Hlt.
right; apply Heq.
cut (Un_growing (fun n:nat => sum_f_R0 An n)).
intro; set (l1 := sum_f_R0 An N) in Hgt.
unfold Un_cv in H; cut (0 < l1 - l).
intro; elim (H _ H2); intros.
set (N0 := max x N); cut (N0 >= x)%nat.
intro; assert (H5 := H3 N0 H4).
cut (l1 <= sum_f_R0 An N0).
intro; unfold R_dist in H5; rewrite Rabs_right in H5.
cut (sum_f_R0 An N0 < l1).
intro; elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H7 H6)).
apply Rplus_lt_reg_l with (- l).
do 2 rewrite (Rplus_comm (- l)).
apply H5.
apply Rle_ge; apply Rplus_le_reg_l with l.
rewrite Rplus_0_r; replace (l + (sum_f_R0 An N0 - l)) with (sum_f_R0 An N0);
[ idtac | ring ]; apply Rle_trans with l1.
left; apply Hgt.
apply H6.
unfold l1; apply Rge_le;
apply (growing_prop (fun k:nat => sum_f_R0 An k)).
apply H1.
unfold ge, N0; apply Nat.le_max_r.
unfold ge, N0; apply Nat.le_max_l.
apply Rplus_lt_reg_l with l; rewrite Rplus_0_r;
replace (l + (l1 - l)) with l1; [ apply Hgt | ring ].
unfold Un_growing; intro; simpl;
pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; apply H0.
Qed.
(**********)
Lemma sum_cv_maj :
forall (An:nat -> R) (fn:nat -> R -> R) (x l1 l2:R),
Un_cv (fun n:nat => SP fn n x) l1 ->
Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
(forall n:nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2.
Proof.
intros; destruct (total_order_T (Rabs l1) l2) as [[Hlt|Heq]|Hgt].
left; apply Hlt.
right; apply Heq.
cut (forall n0:nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0).
intro; cut (0 < (Rabs l1 - l2) / 2).
intro; unfold Un_cv in H, H0.
elim (H _ H3); intros Na H4.
elim (H0 _ H3); intros Nb H5.
set (N := max Na Nb).
unfold R_dist in H4, H5.
cut (Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2).
intro; cut (Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2).
intro; cut (sum_f_R0 An N < (Rabs l1 + l2) / 2).
intro; cut ((Rabs l1 + l2) / 2 < Rabs (SP fn N x)).
intro; cut (sum_f_R0 An N < Rabs (SP fn N x)).
intro; assert (H11 := H2 N).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H10)).
apply Rlt_trans with ((Rabs l1 + l2) / 2); assumption.
destruct (Rcase_abs (Rabs l1 - Rabs (SP fn N x))) as [Hlt|Hge].
apply Rlt_trans with (Rabs l1).
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply Hgt.
discrR.
apply (Rminus_lt _ _ Hlt).
rewrite (Rabs_right _ Hge) in H7.
apply Rplus_lt_reg_l with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)).
replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with
(Rabs l1 - Rabs (SP fn N x)).
unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r; apply H7.
unfold Rdiv; rewrite Rmult_plus_distr_r;
rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l;
repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1;
rewrite double_var; unfold Rdiv in |- *; ring.
destruct (Rcase_abs (sum_f_R0 An N - l2)) as [Hlt|Hge].
apply Rlt_trans with l2.
apply (Rminus_lt _ _ Hlt).
apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (double l2); unfold Rdiv; rewrite (Rmult_comm 2);
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l;
apply Hgt.
discrR.
rewrite (Rabs_right _ Hge) in H6; apply Rplus_lt_reg_l with (- l2).
replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2).
rewrite Rplus_comm; apply H6.
unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_r;
pattern l2 at 2; rewrite double_var;
repeat rewrite (Rmult_comm (/ 2)); rewrite Ropp_plus_distr;
unfold Rdiv; ring.
apply Rle_lt_trans with (Rabs (SP fn N x - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply Rabs_triang_inv2.
apply H4; unfold ge, N; apply Nat.le_max_l.
apply H5; unfold ge, N; apply Nat.le_max_r.
unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_l with l2.
rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1);
[ apply Hgt | ring ].
apply Rinv_0_lt_compat; prove_sup0.
intros; induction n0 as [| n0 Hrecn0].
unfold SP; simpl; apply H1.
unfold SP; simpl.
apply Rle_trans with
(Rabs (sum_f_R0 (fun k:nat => fn k x) n0) + Rabs (fn (S n0) x)).
apply Rabs_triang.
apply Rle_trans with (sum_f_R0 An n0 + Rabs (fn (S n0) x)).
do 2 rewrite <- (Rplus_comm (Rabs (fn (S n0) x))).
apply Rplus_le_compat_l; apply Hrecn0.
apply Rplus_le_compat_l; apply H1.
Qed.
(* TODO #14736 for compatibility only, should be removed after deprecation *)
Require Import Max.
|