1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(**********************************************************)
(** Complements for the reals.Integer and fractional part *)
(* *)
(**********************************************************)
Require Import Rdefinitions Raxioms RIneq.
Require Import Ztac.
Local Open Scope R_scope.
(*********************************************************)
(** * Fractional part *)
(*********************************************************)
(**********)
Definition Int_part (r:R) : Z := (up r - 1)%Z.
(**********)
Definition frac_part (r:R) : R := r - IZR (Int_part r).
(**********)
Lemma tech_up : forall (r:R) (z:Z), r < IZR z -> IZR z <= r + 1 -> z = up r.
Proof.
intros; generalize (archimed r); intro; elim H1; intros; clear H1;
unfold Rgt in H2; unfold Rminus in H3;
generalize (Rplus_le_compat_l r (IZR (up r) + - r) 1 H3);
intro; clear H3; rewrite (Rplus_comm (IZR (up r)) (- r)) in H1;
rewrite <- (Rplus_assoc r (- r) (IZR (up r))) in H1;
rewrite (Rplus_opp_r r) in H1; elim (Rplus_ne (IZR (up r)));
intros a b; rewrite b in H1; clear a b; apply (single_z_r_R1 r z (up r));
auto with zarith real.
Qed.
(**********)
Lemma up_tech :
forall (r:R) (z:Z), IZR z <= r -> r < IZR (z + 1) -> (z + 1)%Z = up r.
Proof.
intros.
apply tech_up with (1 := H0).
rewrite plus_IZR.
now apply Rplus_le_compat_r.
Qed.
(**********)
Lemma fp_R0 : frac_part 0 = 0.
Proof.
unfold frac_part, Int_part.
replace (up 0) with 1%Z.
now rewrite <- minus_IZR.
destruct (archimed 0) as [H1 H2].
apply lt_IZR in H1.
rewrite <- minus_IZR in H2.
apply le_IZR in H2.
normZ. slia H2 HZ. slia H1 HZ.
Qed.
(**********)
Lemma for_base_fp : forall r:R, IZR (up r) - r > 0 /\ IZR (up r) - r <= 1.
Proof.
intro; split; cut (IZR (up r) > r /\ IZR (up r) - r <= 1).
intro; elim H; intros.
apply (Rgt_minus (IZR (up r)) r H0).
apply archimed.
intro; elim H; intros.
exact H1.
apply archimed.
Qed.
(**********)
Lemma base_fp : forall r:R, frac_part r >= 0 /\ frac_part r < 1.
Proof.
intro; unfold frac_part; unfold Int_part; split.
(*sup a O*)
cut (r - IZR (up r) >= -1).
rewrite <- Z_R_minus; simpl; intro; unfold Rminus;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
fold (r - IZR (up r)); fold (r - IZR (up r) - -1);
apply Rge_minus; auto with zarith real.
rewrite <- Ropp_minus_distr; apply Ropp_le_ge_contravar; elim (for_base_fp r);
auto with zarith real.
(*inf a 1*)
cut (r - IZR (up r) < 0).
rewrite <- Z_R_minus; simpl; intro; unfold Rminus;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
fold (r - IZR (up r)); rewrite Ropp_involutive;
elim (Rplus_ne 1); intros a b; pattern 1 at 2;
rewrite <- a; clear a b; rewrite (Rplus_comm (r - IZR (up r)) 1);
apply Rplus_lt_compat_l; auto with zarith real.
elim (for_base_fp r); intros; rewrite <- Ropp_0; rewrite <- Ropp_minus_distr;
apply Ropp_gt_lt_contravar; auto with zarith real.
Qed.
(*********************************************************)
(** * Properties *)
(*********************************************************)
(**********)
Lemma base_Int_part :
forall r:R, IZR (Int_part r) <= r /\ IZR (Int_part r) - r > -1.
Proof.
intro; unfold Int_part; elim (archimed r); intros.
split; rewrite <- (Z_R_minus (up r) 1); simpl.
apply Rminus_le.
replace (IZR (up r) - 1 - r) with (IZR (up r) - r - 1) by ring.
now apply Rle_minus.
apply Rminus_gt.
replace (IZR (up r) - 1 - r - -1) with (IZR (up r) - r) by ring.
now apply Rgt_minus.
Qed.
(**********)
Lemma Int_part_INR : forall n:nat, Int_part (INR n) = Z.of_nat n.
Proof.
intros n; unfold Int_part.
cut (up (INR n) = (Z.of_nat n + Z.of_nat 1)%Z).
intros H'; rewrite H'; simpl; ring.
symmetry; apply tech_up; auto.
replace (Z.of_nat n + Z.of_nat 1)%Z with (Z.of_nat (S n)).
repeat rewrite <- INR_IZR_INZ.
apply lt_INR; auto.
rewrite Z.add_comm; rewrite <- Znat.Nat2Z.inj_add; simpl; auto.
rewrite plus_IZR; simpl; auto with real.
repeat rewrite <- INR_IZR_INZ; auto with real.
Qed.
(**********)
Lemma fp_nat : forall r:R, frac_part r = 0 -> exists c : Z, r = IZR c.
Proof.
unfold frac_part; intros; split with (Int_part r);
apply Rminus_diag_uniq; auto with zarith real.
Qed.
(**********)
Lemma R0_fp_O : forall r:R, 0 <> frac_part r -> 0 <> r.
Proof.
red; intros; rewrite <- H0 in H; generalize fp_R0; intro;
auto with zarith real.
Qed.
(**********)
Lemma Rminus_Int_part1 :
forall r1 r2:R,
frac_part r1 >= frac_part r2 ->
Int_part (r1 - r2) = (Int_part r1 - Int_part r2)%Z.
Proof.
intros; elim (base_fp r1); elim (base_fp r2); intros;
generalize (Rge_le (frac_part r2) 0 H0); intro; clear H0;
generalize (Ropp_le_ge_contravar 0 (frac_part r2) H4);
intro; clear H4; rewrite Ropp_0 in H0;
generalize (Rge_le 0 (- frac_part r2) H0); intro;
clear H0; generalize (Rge_le (frac_part r1) 0 H2);
intro; clear H2; generalize (Ropp_lt_gt_contravar (frac_part r2) 1 H1);
intro; clear H1; unfold Rgt in H2;
generalize
(sum_inequa_Rle_lt 0 (frac_part r1) 1 (-1) (- frac_part r2) 0 H0 H3 H2 H4);
intro; elim H1; intros; clear H1; elim (Rplus_ne 1);
intros a b; rewrite a in H6; clear a b H5;
generalize (Rge_minus (frac_part r1) (frac_part r2) H);
intro; clear H; fold (frac_part r1 - frac_part r2) in H6;
generalize (Rge_le (frac_part r1 - frac_part r2) 0 H1);
intro; clear H1 H3 H4 H0 H2; unfold frac_part in H6, H;
unfold Rminus in H6, H;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H; rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H;
fold (r1 - r2) in H; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H;
generalize
(Rplus_le_compat_l (IZR (Int_part r1) - IZR (Int_part r2)) 0
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) H);
intro; clear H;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H0; unfold Rminus in H0; fold (r1 - r2) in H0;
rewrite
(Rplus_assoc (IZR (Int_part r1)) (- IZR (Int_part r2))
(IZR (Int_part r2) + - IZR (Int_part r1))) in H0;
rewrite <-
(Rplus_assoc (- IZR (Int_part r2)) (IZR (Int_part r2))
(- IZR (Int_part r1))) in H0;
rewrite (Rplus_opp_l (IZR (Int_part r2))) in H0;
elim (Rplus_ne (- IZR (Int_part r1))); intros a b;
rewrite b in H0; clear a b;
elim (Rplus_ne (IZR (Int_part r1) + - IZR (Int_part r2)));
intros a b; rewrite a in H0; clear a b;
rewrite (Rplus_opp_r (IZR (Int_part r1))) in H0; elim (Rplus_ne (r1 - r2));
intros a b; rewrite b in H0; clear a b;
fold (IZR (Int_part r1) - IZR (Int_part r2)) in H0;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H6;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H6;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H6;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H6; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H6;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H6;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H6;
rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H6;
fold (r1 - r2) in H6; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H6;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) - IZR (Int_part r2))
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) 1 H6);
intro; clear H6;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H;
rewrite <- (Ropp_minus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H;
rewrite (Rplus_opp_r (IZR (Int_part r1) - IZR (Int_part r2))) in H;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H;
clear a b; rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H.
rewrite <- (plus_IZR (Int_part r1 - Int_part r2) 1) in H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2) H0 H);
intros; clear H H0; unfold Int_part at 1.
normZ. slia H HZ. slia H0 HZ.
Qed.
(**********)
Lemma Rminus_Int_part2 :
forall r1 r2:R,
frac_part r1 < frac_part r2 ->
Int_part (r1 - r2) = (Int_part r1 - Int_part r2 - 1)%Z.
Proof.
intros; elim (base_fp r1); elim (base_fp r2); intros;
generalize (Rge_le (frac_part r2) 0 H0); intro; clear H0;
generalize (Ropp_le_ge_contravar 0 (frac_part r2) H4);
intro; clear H4; rewrite Ropp_0 in H0;
generalize (Rge_le 0 (- frac_part r2) H0); intro;
clear H0; generalize (Rge_le (frac_part r1) 0 H2);
intro; clear H2; generalize (Ropp_lt_gt_contravar (frac_part r2) 1 H1);
intro; clear H1; unfold Rgt in H2;
generalize
(sum_inequa_Rle_lt 0 (frac_part r1) 1 (-1) (- frac_part r2) 0 H0 H3 H2 H4);
intro; elim H1; intros; clear H1; elim (Rplus_ne (-1));
intros a b; rewrite b in H5; clear a b H6;
generalize (Rlt_minus (frac_part r1) (frac_part r2) H);
intro; clear H; fold (frac_part r1 - frac_part r2) in H5;
clear H3 H4 H0 H2; unfold frac_part in H5, H1; unfold Rminus in H5, H1;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H5;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H5;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H5;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H5; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H5;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H5;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H5;
rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H5;
fold (r1 - r2) in H5; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H5;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) - IZR (Int_part r2)) (-1)
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) H5);
intro; clear H5;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H; unfold Rminus in H; fold (r1 - r2) in H;
rewrite
(Rplus_assoc (IZR (Int_part r1)) (- IZR (Int_part r2))
(IZR (Int_part r2) + - IZR (Int_part r1))) in H;
rewrite <-
(Rplus_assoc (- IZR (Int_part r2)) (IZR (Int_part r2))
(- IZR (Int_part r1))) in H;
rewrite (Rplus_opp_l (IZR (Int_part r2))) in H;
elim (Rplus_ne (- IZR (Int_part r1))); intros a b;
rewrite b in H; clear a b; rewrite (Rplus_opp_r (IZR (Int_part r1))) in H;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H;
clear a b; fold (IZR (Int_part r1) - IZR (Int_part r2)) in H;
fold (IZR (Int_part r1) - IZR (Int_part r2) - 1) in H;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H1;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H1;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H1; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H1;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H1;
rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
fold (r1 - r2) in H1; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H1;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) - IZR (Int_part r2))
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) 0 H1);
intro; clear H1;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H0;
rewrite <- (Ropp_minus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H0;
rewrite (Rplus_opp_r (IZR (Int_part r1) - IZR (Int_part r2))) in H0;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H0;
clear a b; rewrite <- (Rplus_opp_l 1) in H0;
rewrite <- (Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2)) (-(1)) 1)
in H0; fold (IZR (Int_part r1) - IZR (Int_part r2) - 1) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H;
auto with real.
change (_ + -1) with (IZR (Int_part r1 - Int_part r2) - 1) in H;
rewrite (Z_R_minus (Int_part r1 - Int_part r2) 1) in H;
rewrite (Z_R_minus (Int_part r1 - Int_part r2) 1) in H0;
rewrite <- (plus_IZR (Int_part r1 - Int_part r2 - 1) 1) in H0;
generalize (Rlt_le (IZR (Int_part r1 - Int_part r2 - 1)) (r1 - r2) H);
intro; clear H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2 - 1) H1 H0);
intros; clear H0 H1; unfold Int_part at 1.
normZ. slia H HZ. slia H0 HZ.
Qed.
(**********)
Lemma Rminus_fp1 :
forall r1 r2:R,
frac_part r1 >= frac_part r2 ->
frac_part (r1 - r2) = frac_part r1 - frac_part r2.
Proof.
intros; unfold frac_part; generalize (Rminus_Int_part1 r1 r2 H);
intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));
unfold Rminus;
rewrite (Ropp_plus_distr (IZR (Int_part r1)) (- IZR (Int_part r2)));
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2)));
rewrite (Ropp_involutive (IZR (Int_part r2)));
rewrite (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)));
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)));
rewrite (Rplus_comm (- r2) (- IZR (Int_part r1)));
auto with zarith real.
Qed.
(**********)
Lemma Rminus_fp2 :
forall r1 r2:R,
frac_part r1 < frac_part r2 ->
frac_part (r1 - r2) = frac_part r1 - frac_part r2 + 1.
Proof.
intros; unfold frac_part; generalize (Rminus_Int_part2 r1 r2 H);
intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1 - Int_part r2) 1);
rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));
unfold Rminus;
rewrite
(Ropp_plus_distr (IZR (Int_part r1) + - IZR (Int_part r2)) (- IZR 1))
; rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2)));
rewrite (Ropp_involutive (IZR 1));
rewrite (Ropp_involutive (IZR (Int_part r2)));
rewrite (Ropp_plus_distr (IZR (Int_part r1)));
rewrite (Ropp_involutive (IZR (Int_part r2))); simpl;
rewrite <-
(Rplus_assoc (r1 + - r2) (- IZR (Int_part r1) + IZR (Int_part r2)) 1)
; rewrite (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)));
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)));
rewrite (Rplus_comm (- r2) (- IZR (Int_part r1)));
auto with zarith real.
Qed.
(**********)
Lemma plus_Int_part1 :
forall r1 r2:R,
frac_part r1 + frac_part r2 >= 1 ->
Int_part (r1 + r2) = (Int_part r1 + Int_part r2 + 1)%Z.
Proof.
intros; generalize (Rge_le (frac_part r1 + frac_part r2) 1 H); intro; clear H;
elim (base_fp r1); elim (base_fp r2); intros; clear H H2;
generalize (Rplus_lt_compat_l (frac_part r2) (frac_part r1) 1 H3);
intro; clear H3; generalize (Rplus_lt_compat_l 1 (frac_part r2) 1 H1);
intro; clear H1; rewrite (Rplus_comm 1 (frac_part r2)) in H2;
generalize
(Rlt_trans (frac_part r2 + frac_part r1) (frac_part r2 + 1) 2 H H2);
intro; clear H H2; rewrite (Rplus_comm (frac_part r2) (frac_part r1)) in H1;
unfold frac_part in H0, H1; unfold Rminus in H0, H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H1; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H1;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2)
in H1;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H1;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H1;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H0; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H0;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2)
in H0;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H0;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H0;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H0;
generalize
(Rplus_le_compat_l (IZR (Int_part r1) + IZR (Int_part r2)) 1
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) H0);
intro; clear H0;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) + IZR (Int_part r2))
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) 2 H1);
intro; clear H1;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H;
clear a b;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H0; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H0;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H0;
clear a b;
change 2 with (1 + 1) in H0;
rewrite <- (Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2)) 1 1) in H0;
auto with real.
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H0;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H0;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2 + 1) 1) in H0;
generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2 + 1) H H0);
intro; clear H H0; unfold Int_part at 1.
normZ. slia H HZ. slia H0 HZ.
Qed.
(**********)
Lemma plus_Int_part2 :
forall r1 r2:R,
frac_part r1 + frac_part r2 < 1 ->
Int_part (r1 + r2) = (Int_part r1 + Int_part r2)%Z.
Proof.
intros; elim (base_fp r1); elim (base_fp r2); intros; clear H1 H3;
generalize (Rge_le (frac_part r2) 0 H0); intro; clear H0;
generalize (Rge_le (frac_part r1) 0 H2); intro; clear H2;
generalize (Rplus_le_compat_l (frac_part r1) 0 (frac_part r2) H1);
intro; clear H1; elim (Rplus_ne (frac_part r1)); intros a b;
rewrite a in H2; clear a b;
generalize (Rle_trans 0 (frac_part r1) (frac_part r1 + frac_part r2) H0 H2);
intro; clear H0 H2; unfold frac_part in H, H1; unfold Rminus in H, H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H1; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H1;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2)
in H1;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H1;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H1;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2) in H;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H;
generalize
(Rplus_le_compat_l (IZR (Int_part r1) + IZR (Int_part r2)) 0
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) H1);
intro; clear H1;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) + IZR (Int_part r2))
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) 1 H);
intro; clear H;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H1;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H1; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H1;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H1;
clear a b;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H0; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H0;
elim (Rplus_ne (IZR (Int_part r1) + IZR (Int_part r2)));
intros a b; rewrite a in H0; clear a b; elim (Rplus_ne (r1 + r2));
intros a b; rewrite b in H0; clear a b.
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H0;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H1;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H1;
generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2) H0 H1);
intro; clear H0 H1; unfold Int_part at 1.
normZ. slia H HZ. slia H0 HZ.
Qed.
(**********)
Lemma plus_frac_part1 :
forall r1 r2:R,
frac_part r1 + frac_part r2 >= 1 ->
frac_part (r1 + r2) = frac_part r1 + frac_part r2 - 1.
Proof.
intros; unfold frac_part; generalize (plus_Int_part1 r1 r2 H); intro;
rewrite H0; rewrite (plus_IZR (Int_part r1 + Int_part r2) 1);
rewrite (plus_IZR (Int_part r1) (Int_part r2)); simpl;
unfold Rminus at 3 4;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)));
rewrite (Rplus_comm r2 (- IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2);
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2);
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)));
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
unfold Rminus;
rewrite
(Rplus_assoc (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))) (-(1)))
; rewrite <- (Ropp_plus_distr (IZR (Int_part r1) + IZR (Int_part r2)) 1);
trivial with real.
Qed.
(**********)
Lemma plus_frac_part2 :
forall r1 r2:R,
frac_part r1 + frac_part r2 < 1 ->
frac_part (r1 + r2) = frac_part r1 + frac_part r2.
Proof.
intros; unfold frac_part; generalize (plus_Int_part2 r1 r2 H); intro;
rewrite H0; rewrite (plus_IZR (Int_part r1) (Int_part r2));
unfold Rminus at 2 3;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)));
rewrite (Rplus_comm r2 (- IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2);
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2);
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)));
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
unfold Rminus; trivial with zarith real.
Qed.
|