1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import Ranalysis2.
Local Open Scope R_scope.
(** Division *)
Theorem derivable_pt_lim_div :
forall (f1 f2:R -> R) (x l1 l2:R),
derivable_pt_lim f1 x l1 ->
derivable_pt_lim f2 x l2 ->
f2 x <> 0 ->
derivable_pt_lim (f1 / f2) x ((l1 * f2 x - l2 * f1 x) / Rsqr (f2 x)).
Proof.
intros f1 f2 x l1 l2 H H0 H1.
cut (derivable_pt f2 x);
[ intro X | unfold derivable_pt; exists l2; exact H0 ].
assert (H2 := continuous_neq_0 _ _ (derivable_continuous_pt _ _ X) H1).
elim H2; clear H2; intros eps_f2 H2.
unfold div_fct.
assert (H3 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H3; unfold continue_in in H3; unfold limit1_in in H3;
unfold limit_in in H3; unfold dist in H3.
simpl in H3; unfold R_dist in H3.
elim (H3 (Rabs (f2 x) / 2));
[ idtac
| unfold Rdiv; change (0 < Rabs (f2 x) * / 2);
apply Rmult_lt_0_compat;
[ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
clear H3; intros alp_f2 H3.
cut
(forall x0:R,
Rabs (x0 - x) < alp_f2 -> Rabs (f2 x0 - f2 x) < Rabs (f2 x) / 2).
intro H4.
cut (forall a:R, Rabs (a - x) < alp_f2 -> Rabs (f2 x) / 2 < Rabs (f2 a)).
intro H5.
cut
(forall a:R,
Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)).
intro Maj.
unfold derivable_pt_lim; intros.
elim (H (Rabs (eps * f2 x / 8)));
[ idtac
| unfold Rdiv; change (0 < Rabs (eps * f2 x * / 8));
apply Rabs_pos_lt; repeat apply prod_neq_R0;
[ red; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6)
| assumption
| apply Rinv_neq_0_compat; discrR ] ].
intros alp_f1d H7.
case (Req_dec (f1 x) 0); intro.
case (Req_dec l1 0); intro.
(***********************************)
(* First case *)
(* (f1 x)=0 l1 =0 *)
(***********************************)
cut (0 < Rmin eps_f2 (Rmin alp_f2 alp_f1d));
[ intro
| repeat apply Rmin_pos;
[ apply (cond_pos eps_f2)
| elim H3; intros; assumption
| apply (cond_pos alp_f1d) ] ].
exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10).
simpl; intros.
assert (H13 := Rlt_le_trans _ _ _ H12 (Rmin_r _ _)).
assert (H14 := Rlt_le_trans _ _ _ H12 (Rmin_l _ _)).
assert (H15 := Rlt_le_trans _ _ _ H13 (Rmin_r _ _)).
assert (H16 := Rlt_le_trans _ _ _ H13 (Rmin_l _ _)).
assert (H17 := H7 _ H11 H15).
rewrite formule; [ idtac | assumption | assumption | apply H2; apply H14 ].
apply Rle_lt_trans with
(Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) +
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
apply Rabs_4.
repeat rewrite Rabs_mult.
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4).
cut (Rabs (/ f2 (x + h)) * Rabs ((f1 (x + h) - f1 x) / h - l1) < eps / 4).
cut (Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (f2 x - f2 (x + h)) < eps / 4).
cut
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs ((f2 (x + h) - f2 x) / h - l2) <
eps / 4).
cut
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) * Rabs (f2 (x + h) - f2 x) <
eps / 4).
intros.
apply Rlt_4; assumption.
rewrite H8.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite H8.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite H9.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2);
try assumption || apply H2.
apply H14.
apply Rmin_2; assumption.
right; symmetry ; apply quadruple_var.
(***********************************)
(* Second case *)
(* (f1 x)=0 l1<>0 *)
(***********************************)
assert (H10 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H10.
unfold continue_in in H10.
unfold limit1_in in H10.
unfold limit_in in H10.
unfold dist in H10.
simpl in H10.
unfold R_dist in H10.
elim (H10 (Rabs (eps * Rsqr (f2 x) / (8 * l1)))).
clear H10; intros alp_f2t2 H10.
cut
(forall a:R,
Rabs a < alp_f2t2 ->
Rabs (f2 (x + a) - f2 x) < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
intro H11.
cut (0 < Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)).
intro.
exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12).
simpl.
intros.
assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)).
assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)).
assert (H17 := Rlt_le_trans _ _ _ H15 (Rmin_l _ _)).
assert (H18 := Rlt_le_trans _ _ _ H15 (Rmin_r _ _)).
assert (H19 := Rlt_le_trans _ _ _ H16 (Rmin_l _ _)).
assert (H20 := Rlt_le_trans _ _ _ H16 (Rmin_r _ _)).
clear H14 H15 H16.
rewrite formule; try assumption.
apply Rle_lt_trans with
(Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) +
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
apply Rabs_4.
repeat rewrite Rabs_mult.
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4).
cut (Rabs (/ f2 (x + h)) * Rabs ((f1 (x + h) - f1 x) / h - l1) < eps / 4).
cut (Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (f2 x - f2 (x + h)) < eps / 4).
cut
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs ((f2 (x + h) - f2 x) / h - l2) <
eps / 4).
cut
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) * Rabs (f2 (x + h) - f2 x) <
eps / 4).
intros.
apply Rlt_4; assumption.
rewrite H8.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite H8.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
right; symmetry ; apply quadruple_var.
apply H2; assumption.
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
apply (cond_pos alp_f1d).
elim H3; intros; assumption.
elim H10; intros; assumption.
intros.
elim H10; intros.
case (Req_dec a 0); intro.
rewrite H14; rewrite Rplus_0_r.
unfold Rminus; rewrite Rplus_opp_r.
rewrite Rabs_R0.
apply Rabs_pos_lt.
unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc.
repeat apply prod_neq_R0; try assumption.
now apply Rgt_not_eq.
apply Rinv_neq_0_compat; apply prod_neq_R0; [discrR | assumption].
apply H13.
split.
apply D_x_no_cond; assumption.
replace (x + a - x) with a; [ assumption | ring ].
change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc;
repeat apply prod_neq_R0.
red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
assumption.
assumption.
apply Rinv_neq_0_compat; apply prod_neq_R0; [discrR | assumption].
(***********************************)
(* Third case *)
(* (f1 x)<>0 l1=0 l2=0 *)
(***********************************)
case (Req_dec l1 0); intro.
case (Req_dec l2 0); intro.
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x))));
[ idtac
| apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc;
repeat apply prod_neq_R0 ;
[ assumption
| assumption
| now apply Rgt_not_eq
| apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption ] ].
intros alp_f2d H12.
cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)).
intro.
exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11).
simpl.
intros.
assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)).
assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)).
assert (H17 := Rlt_le_trans _ _ _ H15 (Rmin_l _ _)).
assert (H18 := Rlt_le_trans _ _ _ H15 (Rmin_r _ _)).
assert (H19 := Rlt_le_trans _ _ _ H16 (Rmin_l _ _)).
assert (H20 := Rlt_le_trans _ _ _ H16 (Rmin_r _ _)).
clear H15 H16.
rewrite formule; try assumption.
apply Rle_lt_trans with
(Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) +
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
apply Rabs_4.
repeat rewrite Rabs_mult.
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4).
cut (Rabs (/ f2 (x + h)) * Rabs ((f1 (x + h) - f1 x) / h - l1) < eps / 4).
cut (Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (f2 x - f2 (x + h)) < eps / 4).
cut
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs ((f2 (x + h) - f2 x) / h - l2) <
eps / 4).
cut
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) * Rabs (f2 (x + h) - f2 x) <
eps / 4).
intros.
apply Rlt_4; assumption.
rewrite H10.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite H9.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); assumption || idtac.
apply H2; assumption.
apply Rmin_2; assumption.
right; symmetry ; apply quadruple_var.
apply H2; assumption.
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
elim H3; intros; assumption.
apply (cond_pos alp_f1d).
apply (cond_pos alp_f2d).
(***********************************)
(* Fourth case *)
(* (f1 x)<>0 l1=0 l2<>0 *)
(***********************************)
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x))));
[ idtac
| apply Rabs_pos_lt; unfold Rsqr, Rdiv;
repeat apply prod_neq_R0 ;
[ assumption..
| now apply Rgt_not_eq
| apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption ] ].
intros alp_f2d H11.
assert (H12 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H12.
unfold continue_in in H12.
unfold limit1_in in H12.
unfold limit_in in H12.
unfold dist in H12.
simpl in H12.
unfold R_dist in H12.
elim (H12 (Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2)))).
intros alp_f2c H13.
cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))).
intro.
exists
(mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c)))
H14).
simpl; intros.
assert (H17 := Rlt_le_trans _ _ _ H16 (Rmin_l _ _)).
assert (H18 := Rlt_le_trans _ _ _ H16 (Rmin_r _ _)).
assert (H19 := Rlt_le_trans _ _ _ H18 (Rmin_r _ _)).
assert (H20 := Rlt_le_trans _ _ _ H19 (Rmin_l _ _)).
assert (H21 := Rlt_le_trans _ _ _ H19 (Rmin_r _ _)).
assert (H22 := Rlt_le_trans _ _ _ H18 (Rmin_l _ _)).
assert (H23 := Rlt_le_trans _ _ _ H17 (Rmin_l _ _)).
assert (H24 := Rlt_le_trans _ _ _ H17 (Rmin_r _ _)).
clear H16 H17 H18 H19.
cut
(forall a:R,
Rabs a < alp_f2c ->
Rabs (f2 (x + a) - f2 x) <
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
intro.
rewrite formule; try assumption.
apply Rle_lt_trans with
(Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) +
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
apply Rabs_4.
repeat rewrite Rabs_mult.
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4).
cut (Rabs (/ f2 (x + h)) * Rabs ((f1 (x + h) - f1 x) / h - l1) < eps / 4).
cut (Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (f2 x - f2 (x + h)) < eps / 4).
cut
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs ((f2 (x + h) - f2 x) / h - l2) <
eps / 4).
cut
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) * Rabs (f2 (x + h) - f2 x) <
eps / 4).
intros.
apply Rlt_4; assumption.
rewrite <- Rabs_mult.
apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite H9.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
right; symmetry ; apply quadruple_var.
apply H2; assumption.
intros.
case (Req_dec a 0); intro.
rewrite H17; rewrite Rplus_0_r.
unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0.
apply Rabs_pos_lt.
unfold Rdiv, Rsqr.
repeat rewrite Rinv_mult.
repeat apply prod_neq_R0; try assumption.
red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; assumption.
apply Rinv_neq_0_compat; assumption.
discrR.
elim H13; intros.
apply H19.
split.
apply D_x_no_cond; assumption.
replace (x + a - x) with a; [ assumption | ring ].
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
elim H3; intros; assumption.
apply (cond_pos alp_f1d).
apply (cond_pos alp_f2d).
elim H13; intros; assumption.
change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
apply Rabs_pos_lt.
unfold Rsqr, Rdiv.
repeat rewrite Rinv_mult.
repeat apply prod_neq_R0; try assumption.
red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; assumption.
apply Rinv_neq_0_compat; assumption.
(***********************************)
(* Fifth case *)
(* (f1 x)<>0 l1<>0 l2=0 *)
(***********************************)
case (Req_dec l2 0); intro.
assert (H11 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H11.
unfold continue_in in H11.
unfold limit1_in in H11.
unfold limit_in in H11.
unfold dist in H11.
simpl in H11.
unfold R_dist in H11.
elim (H11 (Rabs (eps * Rsqr (f2 x) / (8 * l1)))).
clear H11; intros alp_f2t2 H11.
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x)))).
intros alp_f2d H12.
cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))).
intro.
exists
(mkposreal
(Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13).
simpl.
intros.
cut
(forall a:R,
Rabs a < alp_f2t2 ->
Rabs (f2 (x + a) - f2 x) < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
intro.
assert (H17 := Rlt_le_trans _ _ _ H15 (Rmin_l _ _)).
assert (H18 := Rlt_le_trans _ _ _ H15 (Rmin_r _ _)).
assert (H19 := Rlt_le_trans _ _ _ H17 (Rmin_r _ _)).
assert (H20 := Rlt_le_trans _ _ _ H17 (Rmin_l _ _)).
assert (H21 := Rlt_le_trans _ _ _ H18 (Rmin_r _ _)).
assert (H22 := Rlt_le_trans _ _ _ H18 (Rmin_l _ _)).
assert (H23 := Rlt_le_trans _ _ _ H21 (Rmin_l _ _)).
assert (H24 := Rlt_le_trans _ _ _ H21 (Rmin_r _ _)).
clear H15 H17 H18 H21.
rewrite formule; try assumption.
apply Rle_lt_trans with
(Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) +
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
apply Rabs_4.
repeat rewrite Rabs_mult.
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4).
cut (Rabs (/ f2 (x + h)) * Rabs ((f1 (x + h) - f1 x) / h - l1) < eps / 4).
cut (Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (f2 x - f2 (x + h)) < eps / 4).
cut
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs ((f2 (x + h) - f2 x) / h - l2) <
eps / 4).
cut
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) * Rabs (f2 (x + h) - f2 x) <
eps / 4).
intros.
apply Rlt_4; assumption.
rewrite H10.
unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
right; symmetry ; apply quadruple_var.
apply H2; assumption.
intros.
case (Req_dec a 0); intro.
rewrite H17; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0.
apply Rabs_pos_lt.
unfold Rdiv; rewrite Rinv_mult.
unfold Rsqr.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)).
elim H11; intros.
apply H19.
split.
apply D_x_no_cond; assumption.
replace (x + a - x) with a; [ assumption | ring ].
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
elim H3; intros; assumption.
apply (cond_pos alp_f1d).
apply (cond_pos alp_f2d).
elim H11; intros; assumption.
apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)).
change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)).
(***********************************)
(* Sixth case *)
(* (f1 x)<>0 l1<>0 l2<>0 *)
(***********************************)
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x)))).
intros alp_f2d H11.
assert (H12 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H12.
unfold continue_in in H12.
unfold limit1_in in H12.
unfold limit_in in H12.
unfold dist in H12.
simpl in H12.
unfold R_dist in H12.
elim (H12 (Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2)))).
intros alp_f2c H13.
elim (H12 (Rabs (eps * Rsqr (f2 x) / (8 * l1)))).
intros alp_f2t2 H14.
cut
(0 <
Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))
(Rmin alp_f2c alp_f2t2)).
intro.
exists
(mkposreal
(Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))
(Rmin alp_f2c alp_f2t2)) H15).
simpl.
intros.
assert (H18 := Rlt_le_trans _ _ _ H17 (Rmin_l _ _)).
assert (H19 := Rlt_le_trans _ _ _ H17 (Rmin_r _ _)).
assert (H20 := Rlt_le_trans _ _ _ H18 (Rmin_l _ _)).
assert (H21 := Rlt_le_trans _ _ _ H18 (Rmin_r _ _)).
assert (H22 := Rlt_le_trans _ _ _ H19 (Rmin_l _ _)).
assert (H23 := Rlt_le_trans _ _ _ H19 (Rmin_r _ _)).
assert (H24 := Rlt_le_trans _ _ _ H20 (Rmin_l _ _)).
assert (H25 := Rlt_le_trans _ _ _ H20 (Rmin_r _ _)).
assert (H26 := Rlt_le_trans _ _ _ H21 (Rmin_l _ _)).
assert (H27 := Rlt_le_trans _ _ _ H21 (Rmin_r _ _)).
clear H17 H18 H19 H20 H21.
cut
(forall a:R,
Rabs a < alp_f2t2 ->
Rabs (f2 (x + a) - f2 x) < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
cut
(forall a:R,
Rabs a < alp_f2c ->
Rabs (f2 (x + a) - f2 x) <
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
intros.
rewrite formule; try assumption.
apply Rle_lt_trans with
(Rabs (/ f2 (x + h) * ((f1 (x + h) - f1 x) / h - l1)) +
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
apply Rabs_4.
repeat rewrite Rabs_mult.
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4).
cut (Rabs (/ f2 (x + h)) * Rabs ((f1 (x + h) - f1 x) / h - l1) < eps / 4).
cut (Rabs (l1 / (f2 x * f2 (x + h))) * Rabs (f2 x - f2 (x + h)) < eps / 4).
cut
(Rabs (f1 x / (f2 x * f2 (x + h))) * Rabs ((f2 (x + h) - f2 x) / h - l2) <
eps / 4).
cut
(Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h))) * Rabs (f2 (x + h) - f2 x) <
eps / 4).
intros.
apply Rlt_4; assumption.
rewrite <- Rabs_mult.
apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
right; symmetry ; apply quadruple_var.
apply H2; assumption.
intros.
case (Req_dec a 0); intro.
rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)).
apply prod_neq_R0; [ discrR | assumption ].
elim H13; intros.
apply H20.
split.
apply D_x_no_cond; assumption.
replace (x + a - x) with a; [ assumption | ring ].
intros.
case (Req_dec a 0); intro.
rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)).
elim H14; intros.
apply H20.
split.
unfold D_x, no_cond; split.
trivial.
apply Rminus_not_eq_right.
replace (x + a - x) with a; [ assumption | ring ].
replace (x + a - x) with a; [ assumption | ring ].
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
elim H3; intros; assumption.
apply (cond_pos alp_f1d).
apply (cond_pos alp_f2d).
elim H13; intros; assumption.
elim H14; intros; assumption.
change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))); apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)).
change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2)));
apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)).
apply prod_neq_R0; [ discrR | assumption ].
apply Rabs_pos_lt.
unfold Rdiv, Rsqr; rewrite Rinv_mult.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
(red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)).
intros.
unfold Rdiv.
apply Rmult_lt_reg_l with (Rabs (f2 (x + a))).
apply Rabs_pos_lt; apply H2.
apply Rlt_le_trans with (Rmin eps_f2 alp_f2).
assumption.
apply Rmin_l.
rewrite <- Rinv_r_sym.
apply Rmult_lt_reg_l with (Rabs (f2 x)).
apply Rabs_pos_lt; assumption.
rewrite Rmult_1_r.
rewrite (Rmult_comm (Rabs (f2 x))).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
apply Rmult_lt_reg_l with (/ 2).
apply Rinv_0_lt_compat; prove_sup0.
repeat rewrite (Rmult_comm (/ 2)).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r.
unfold Rdiv in H5; apply H5.
replace (x + a - x) with a.
assert (H7 := Rlt_le_trans _ _ _ H6 (Rmin_r _ _)); assumption.
ring.
discrR.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; apply H2.
assert (H7 := Rlt_le_trans _ _ _ H6 (Rmin_l _ _)); assumption.
intros.
assert (H6 := H4 a H5).
rewrite <- (Rabs_Ropp (f2 a - f2 x)) in H6.
rewrite Ropp_minus_distr in H6.
assert (H7 := Rle_lt_trans _ _ _ (Rabs_triang_inv _ _) H6).
apply Rplus_lt_reg_l with (- Rabs (f2 a) + Rabs (f2 x) / 2).
rewrite Rplus_assoc.
rewrite <- double_var.
do 2 rewrite (Rplus_comm (- Rabs (f2 a))).
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
unfold Rminus in H7; assumption.
intros.
case (Req_dec x x0); intro.
rewrite <- H5; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
unfold Rdiv; apply Rmult_lt_0_compat;
[ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim H3; intros.
apply H7.
split.
unfold D_x, no_cond; split.
trivial.
assumption.
assumption.
Qed.
Lemma derivable_pt_div :
forall (f1 f2:R -> R) (x:R),
derivable_pt f1 x ->
derivable_pt f2 x -> f2 x <> 0 -> derivable_pt (f1 / f2) x.
Proof.
unfold derivable_pt.
intros f1 f2 x X X0 H.
elim X; intros.
elim X0; intros.
exists ((x0 * f2 x - x1 * f1 x) / Rsqr (f2 x)).
apply derivable_pt_lim_div; assumption.
Qed.
Lemma derivable_div :
forall f1 f2:R -> R,
derivable f1 ->
derivable f2 -> (forall x:R, f2 x <> 0) -> derivable (f1 / f2).
Proof.
unfold derivable; intros f1 f2 X X0 H x.
apply (derivable_pt_div _ _ _ (X x) (X0 x) (H x)).
Qed.
Lemma derive_pt_div :
forall (f1 f2:R -> R) (x:R) (pr1:derivable_pt f1 x)
(pr2:derivable_pt f2 x) (na:f2 x <> 0),
derive_pt (f1 / f2) x (derivable_pt_div _ _ _ pr1 pr2 na) =
(derive_pt f1 x pr1 * f2 x - derive_pt f2 x pr2 * f1 x) / Rsqr (f2 x).
Proof.
intros.
assert (H := derivable_derive f1 x pr1).
assert (H0 := derivable_derive f2 x pr2).
assert
(H1 := derivable_derive (f1 / f2)%F x (derivable_pt_div _ _ _ pr1 pr2 na)).
elim H; clear H; intros l1 H.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_div; assumption.
Qed.
|