1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import Rseries.
Require Import RiemannInt.
Require Import SeqProp.
Require Import Lia.
Require Import Lra.
Local Open Scope R_scope.
(** * Preliminaries lemmas *)
Lemma f_incr_implies_g_incr_interv : forall f g:R->R, forall lb ub,
lb < ub ->
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
(forall x , f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x y, f lb <= x -> x < y -> y <= f ub -> g x < g y).
Proof.
intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub.
assert (x_encad : f lb <= x <= f ub) by lra.
assert (y_encad : f lb <= y <= f ub) by lra.
assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)).
assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)).
case (Rlt_dec (g x) (g y)); [ easy |].
intros Hfalse.
assert (Temp := Rnot_lt_le _ _ Hfalse).
enough (y <= x) by lra.
replace y with (id y) by easy.
replace x with (id x) by easy.
rewrite <- f_eq_g by easy.
rewrite <- f_eq_g by easy.
assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y). {
intros m n lb_le_m m_le_n n_lt_ub.
case (m_le_n).
- intros; apply Rlt_le, f_incr, Rlt_le; assumption.
- intros Hyp; rewrite Hyp; apply Req_le; reflexivity.
}
apply f_incr2; intuition.
enough (g x <> ub) by lra.
intro Hf.
assert (Htemp : (comp f g) x = f ub). {
unfold comp; rewrite Hf; reflexivity.
}
rewrite f_eq_g in Htemp by easy.
unfold id in Htemp.
lra.
Qed.
Lemma derivable_pt_id_interv : forall (lb ub x:R),
lb <= x <= ub ->
derivable_pt id x.
Proof.
intros.
reg.
Qed.
Lemma pr_nu_var2_interv : forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x)
(pr2 : derivable_pt g x),
lb < ub ->
lb < x < ub ->
(forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.
Proof.
intros f g lb ub x Prf Prg lb_lt_ub x_encad local_eq.
assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs g x l)).
intros a l a_encad.
unfold derivable_pt_abs, derivable_pt_lim.
split.
intros Hyp eps eps_pos.
elim (Hyp eps eps_pos) ; intros delta Hyp2.
assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0).
clear-a lb ub a_encad delta.
apply Rmin_pos ; [exact ((cond_pos delta)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition.
exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond).
intros h h_neq h_encad.
replace (g (a + h) - g a) with (f (a + h) - f a).
apply Hyp2 ; intuition.
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))).
assumption. apply Rmin_l.
assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h).
intros ; apply Ropp_eq_compat ; intuition.
rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity.
assumption.
assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
split.
assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
intros ; lra.
apply Sublemma.
apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
assert (Sublemma : forall x y z, y < z - x -> x + y < z).
intros ; lra.
apply Sublemma.
apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
intros Hyp eps eps_pos.
elim (Hyp eps eps_pos) ; intros delta Hyp2.
assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0).
clear-a lb ub a_encad delta.
apply Rmin_pos ; [exact ((cond_pos delta)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition.
exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond).
intros h h_neq h_encad.
replace (f (a + h) - f a) with (g (a + h) - g a).
apply Hyp2 ; intuition.
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))).
assumption. apply Rmin_l.
assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h).
intros ; apply Ropp_eq_compat ; intuition.
rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity.
assumption.
assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
split.
assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
intros ; lra.
apply Sublemma.
apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
assert (Sublemma : forall x y z, y < z - x -> x + y < z).
intros ; lra.
apply Sublemma.
apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
unfold derivable_pt in Prf.
unfold derivable_pt in Prg.
elim Prf; intros x0 p.
elim Prg; intros x1 p0.
assert (Temp := p); rewrite H in Temp.
unfold derivable_pt_abs in p.
unfold derivable_pt_abs in p0.
simpl in |- *.
apply (uniqueness_limite g x x0 x1 Temp p0).
assumption.
Qed.
(* begin hide *)
Lemma leftinv_is_rightinv : forall (f g:R->R),
(forall x y, x < y -> f x < f y) ->
(forall x, (comp f g) x = id x) ->
(forall x, (comp g f) x = id x).
Proof.
intros f g f_incr Hyp x.
assert (forall x, f (g (f x)) = f x).
intros ; apply Hyp.
assert(f_inj : forall x y, f x = f y -> x = y).
intros a b fa_eq_fb.
case(total_order_T a b).
intro s ; case s ; clear s.
intro Hf.
assert (Hfalse := f_incr a b Hf).
apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption.
intuition.
intro Hf. assert (Hfalse := f_incr b a Hf).
apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption.
apply f_inj. unfold comp.
unfold comp in Hyp.
rewrite Hyp.
unfold id.
reflexivity.
Qed.
(* end hide *)
Lemma leftinv_is_rightinv_interv : forall (f g:R->R) (lb ub:R),
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall y, f lb <= y -> y <= f ub -> (comp f g) y = id y) ->
(forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
forall x,
lb <= x <= ub ->
(comp g f) x = id x.
Proof.
intros f g lb ub f_incr_interv Hyp g_wf x x_encad.
assert(f_inj : forall x y, lb <= x <= ub -> lb <= y <= ub -> f x = f y -> x = y).
intros a b a_encad b_encad fa_eq_fb.
case(total_order_T a b).
intro s ; case s ; clear s.
intro Hf.
assert (Hfalse := f_incr_interv a b (proj1 a_encad) Hf (proj2 b_encad)).
apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption.
intuition.
intro Hf. assert (Hfalse := f_incr_interv b a (proj1 b_encad) Hf (proj2 a_encad)).
apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption.
assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y).
intros m n cond1 cond2 cond3.
case cond2.
intro cond. apply Rlt_le ; apply f_incr_interv ; assumption.
intro cond ; right ; rewrite cond ; reflexivity.
assert (Hyp2:forall x, lb <= x <= ub -> f (g (f x)) = f x).
intros ; apply Hyp. apply f_incr_interv2 ; intuition.
apply f_incr_interv2 ; intuition.
unfold comp ; unfold comp in Hyp.
apply f_inj.
apply g_wf ; apply f_incr_interv2 ; intuition.
unfold id ; assumption.
apply Hyp2 ; unfold id ; assumption.
Qed.
(** Intermediate Value Theorem on an Interval (Proof mainly taken from Reals.Rsqrt_def) and its corollary *)
Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat),
x < y ->
x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y.
Proof.
assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub).
intros x y lb ub Hyp.
lra.
intros x y P N x_lt_y.
induction N.
simpl ; intuition.
simpl.
case (P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2)).
split. apply Sublemma ; intuition.
intuition.
split. intuition.
apply Sublemma ; intuition.
Qed.
Lemma IVT_interv_prelim1 : forall (x y x0:R) (D : R -> bool),
x < y ->
Un_cv (dicho_up x y D) x0 ->
x <= x0 <= y.
Proof.
intros x y x0 D x_lt_y bnd.
assert (Main : forall n, x <= dicho_up x y D n <= y).
intro n. unfold dicho_up.
apply (proj1 (IVT_interv_prelim0 x y D n x_lt_y)).
split.
apply Rle_cv_lim with (Vn:=dicho_up x y D) (Un:=fun n => x).
intro n ; exact (proj1 (Main n)).
unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (x -x) with 0 by field ; rewrite Rabs_R0 ; assumption.
assumption.
apply Rle_cv_lim with (Un:=dicho_up x y D) (Vn:=fun n => y).
intro n ; exact (proj2 (Main n)).
assumption.
unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (y -y) with 0 by field ; rewrite Rabs_R0 ; assumption.
Qed.
Lemma IVT_interv : forall (f : R -> R) (x y : R),
(forall a, x <= a <= y -> continuity_pt f a) ->
x < y ->
f x < 0 ->
0 < f y ->
{z : R | x <= z <= y /\ f z = 0}.
Proof.
intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
cut (x <= y).
intro.
generalize (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3).
generalize (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3).
intros X X0.
elim X; intros x0 p.
elim X0; intros x1 p0.
assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p).
rewrite H4 in p0.
exists x0.
split.
split.
apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
simpl in |- *.
right; reflexivity.
apply growing_ineq.
apply dicho_lb_growing; assumption.
assumption.
apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0).
apply decreasing_ineq.
apply dicho_up_decreasing; assumption.
assumption.
right; reflexivity.
2: left; assumption.
set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n).
set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n).
cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0).
cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0).
intros.
cut (forall n:nat, f (Vn n) <= 0).
cut (forall n:nat, 0 <= f (Wn n)).
intros.
assert (H9 := H6 H8).
assert (H10 := H5 H7).
apply Rle_antisym; assumption.
intro.
unfold Wn in |- *.
cut (forall z:R, cond_positivity z = true <-> 0 <= z).
intro.
assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n).
elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros.
apply H9.
apply H8.
elim (H7 (f y)); intros.
apply H12.
left; assumption.
intro.
unfold cond_positivity in |- *.
destruct (Rle_dec 0 z) as [|Hnotle].
split.
intro; assumption.
intro; reflexivity.
split.
intro feqt;discriminate feqt.
intro.
elim Hnotle; assumption.
unfold Vn in |- *.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n).
left.
elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros.
apply H9.
apply H8.
elim (H7 (f x)); intros.
apply H12.
assumption.
intro.
unfold cond_positivity in |- *.
destruct (Rle_dec 0 z) as [Hle|].
split.
intro feqt; discriminate feqt.
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H7)).
split.
intro; auto with real.
intro; reflexivity.
cut (Un_cv Wn x0).
intros.
assert (Temp : x <= x0 <= y).
apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
assert (H7 := continuity_seq f Wn x0 (H x0 Temp) H5).
destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt].
left; assumption.
right; reflexivity.
unfold Un_cv in H7; unfold R_dist in H7.
cut (0 < - f x0).
intro.
elim (H7 (- f x0) H8); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
assert (H11 := H9 x2 H10).
rewrite Rabs_right in H11.
pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11.
unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11.
assert (H12 := Rplus_lt_reg_l _ _ _ H11).
assert (H13 := H6 x2).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)).
apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat.
apply H6.
exact H8.
apply Ropp_0_gt_lt_contravar; assumption.
unfold Wn in |- *; assumption.
cut (Un_cv Vn x0).
intros.
assert (Temp : x <= x0 <= y).
apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
assert (H7 := continuity_seq f Vn x0 (H x0 Temp) H5).
destruct (total_order_T 0 (f x0)) as [[Hlt|Heq]|].
unfold Un_cv in H7; unfold R_dist in H7.
elim (H7 (f x0) Hlt); intros.
cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
rewrite Ropp_minus_distr' in H10.
unfold Rminus in H10.
assert (H11 := Rplus_lt_reg_l _ _ _ H10).
assert (H12 := H6 x2).
cut (0 < f (Vn x2)).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)).
rewrite <- (Ropp_involutive (f (Vn x2))).
apply Ropp_0_gt_lt_contravar; assumption.
apply Rplus_lt_reg_l with (f x0 - f (Vn x2)).
rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0;
[ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
right; rewrite <- Heq; reflexivity.
left; assumption.
unfold Vn in |- *; assumption.
Qed.
(* begin hide *)
Ltac case_le H :=
let t := type of H in
let h' := fresh in
match t with ?x <= ?y => case (total_order_T x y);
[intros h'; case h'; clear h' |
intros h'; clear -H h'; elimtype False; lra ] end.
(* end hide *)
Lemma f_interv_is_interv : forall (f:R->R) (lb ub y:R),
lb < ub ->
f lb <= y <= f ub ->
(forall x, lb <= x <= ub -> continuity_pt f x) ->
{x | lb <= x <= ub /\ f x = y}.
Proof.
intros f lb ub y lb_lt_ub y_encad f_cont_interv.
case y_encad ; intro y_encad1.
case_le y_encad1 ; intros y_encad2 y_encad3 ; case_le y_encad3.
intro y_encad4.
clear y_encad y_encad1 y_encad3.
assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => f x - y) a).
intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist.
intros eps eps_pos. elim (f_cont_interv a a_encad eps eps_pos).
intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp).
exists alpha. split.
assumption. intros x x_cond.
replace (f x - y - (f a - y)) with (f x - f a) by field.
exact (Temp x x_cond).
assert (H1 : (fun x : R => f x - y) lb < 0).
apply Rlt_minus. assumption.
assert (H2 : 0 < (fun x : R => f x - y) ub).
apply Rgt_minus ; assumption.
destruct (IVT_interv (fun x => f x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx).
exists x.
destruct Hx as (Hyp,Result).
intuition.
intro H ; exists ub ; intuition.
intro H ; exists lb ; intuition.
intro H ; exists ub ; intuition.
Qed.
(** ** The derivative of a reciprocal function *)
(** * Continuity of the reciprocal function *)
Lemma continuity_pt_recip_prelim : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub),
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x, lb <= x <= ub -> (comp g f) x = id x) ->
(forall a, lb <= a <= ub -> continuity_pt f a) ->
forall b,
f lb < b < f ub ->
continuity_pt g b.
Proof.
assert (Sublemma : forall x y z, Rmax x y < z <-> x < z /\ y < z).
intros x y z. split.
unfold Rmax. case (Rle_dec x y) ; intros Hyp Hyp2.
split. apply Rle_lt_trans with (r2:=y) ; assumption. assumption.
split. assumption. apply Rlt_trans with (r2:=x).
assert (Temp : forall x y, ~ x <= y -> x > y).
intros m n Hypmn. intuition.
apply Temp ; clear Temp ; assumption.
assumption.
intros Hyp.
unfold Rmax. case (Rle_dec x y).
intro ; exact (proj2 Hyp).
intro ; exact (proj1 Hyp).
assert (Sublemma2 : forall x y z, Rmin x y > z <-> x > z /\ y > z).
intros x y z. split.
unfold Rmin. case (Rle_dec x y) ; intros Hyp Hyp2.
split. assumption.
apply Rlt_le_trans with (r2:=x) ; intuition.
split.
apply Rlt_trans with (r2:=y). intuition.
assert (Temp : forall x y, ~ x <= y -> x > y).
intros m n Hypmn. intuition.
apply Temp ; clear Temp ; assumption.
assumption.
intros Hyp.
unfold Rmin. case (Rle_dec x y).
intro ; exact (proj1 Hyp).
intro ; exact (proj2 Hyp).
assert (Sublemma3 : forall x y, x <= y /\ x <> y -> x < y).
intros m n Hyp. unfold Rle in Hyp.
destruct Hyp as (Hyp1,Hyp2).
case Hyp1.
intuition.
intro Hfalse ; apply False_ind ; apply Hyp2 ; exact Hfalse.
intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad.
assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y).
intros m n cond1 cond2 cond3.
case cond2.
intro cond. apply Rlt_le ; apply f_incr_interv ; assumption.
intro cond ; right ; rewrite cond ; reflexivity.
unfold continuity_pt, continue_in, limit1_in, limit_in ; intros eps eps_pos.
unfold dist ; simpl ; unfold R_dist.
assert (b_encad_e : f lb <= b <= f ub) by intuition.
elim (f_interv_is_interv f lb ub b lb_lt_ub b_encad_e f_cont_interv) ; intros x Temp.
destruct Temp as (x_encad,f_x_b).
assert (lb_lt_x : lb < x).
assert (Temp : x <> lb).
intro Hfalse.
assert (Temp' : b = f lb).
rewrite <- f_x_b ; rewrite Hfalse ; reflexivity.
assert (Temp'' : b <> f lb).
apply Rgt_not_eq ; exact (proj1 b_encad).
apply Temp'' ; exact Temp'.
apply Sublemma3.
split. exact (proj1 x_encad).
assert (Temp2 : forall x y:R, x <> y <-> y <> x).
intros m n. split ; intuition.
rewrite Temp2 ; assumption.
assert (x_lt_ub : x < ub).
assert (Temp : x <> ub).
intro Hfalse.
assert (Temp' : b = f ub).
rewrite <- f_x_b ; rewrite Hfalse ; reflexivity.
assert (Temp'' : b <> f ub).
apply Rlt_not_eq ; exact (proj2 b_encad).
apply Temp'' ; exact Temp'.
apply Sublemma3.
split ; [exact (proj2 x_encad) | assumption].
pose (x1 := Rmax (x - eps) lb).
pose (x2 := Rmin (x + eps) ub).
assert (Hx1 : x1 = Rmax (x - eps) lb) by intuition.
assert (Hx2 : x2 = Rmin (x + eps) ub) by intuition.
assert (x1_encad : lb <= x1 <= ub).
split. apply RmaxLess2.
apply Rlt_le. rewrite Hx1. rewrite Sublemma.
split. apply Rlt_trans with (r2:=x) ; lra.
assumption.
assert (x2_encad : lb <= x2 <= ub).
split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2.
split. apply Rgt_trans with (r2:=x) ; lra.
assumption.
apply Rmin_r.
assert (x_lt_x2 : x < x2).
rewrite Hx2.
apply Rgt_lt. rewrite Sublemma2.
split ; lra.
assert (x1_lt_x : x1 < x).
rewrite Hx1.
rewrite Sublemma.
split ; lra.
exists (Rmin (f x - f x1) (f x2 - f x)).
split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; lra.
apply f_incr_interv ; intuition.
intros y Temp.
destruct Temp as (_,y_cond).
rewrite <- f_x_b in y_cond.
assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2).
intros.
split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. lra.
apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)).
replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs.
rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive.
intuition.
apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
apply Rmin_l.
assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. lra.
apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs.
apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
apply Rmin_r.
assert (Temp' := Temp (f x) y (f x - f x1) (f x2 - f x)).
replace (f x - (f x - f x1)) with (f x1) in Temp' by field.
replace (f x + (f x2 - f x)) with (f x2) in Temp' by field.
assert (T : f x - f x1 > 0).
apply Rgt_minus. apply f_incr_interv ; intuition.
assert (T' : f x2 - f x > 0).
apply Rgt_minus. apply f_incr_interv ; intuition.
assert (Main := Temp' T T' y_cond).
clear Temp Temp' T T'.
assert (x1_lt_x2 : x1 < x2).
apply Rlt_trans with (r2:=x) ; assumption.
assert (f_cont_myinterv : forall a : R, x1 <= a <= x2 -> continuity_pt f a).
intros ; apply f_cont_interv ; split.
apply Rle_trans with (r2 := x1) ; intuition.
apply Rle_trans with (r2 := x2) ; intuition.
elim (f_interv_is_interv f x1 x2 y x1_lt_x2 Main f_cont_myinterv) ; intros x' Temp.
destruct Temp as (x'_encad,f_x'_y).
rewrite <- f_x_b ; rewrite <- f_x'_y.
unfold comp in f_eq_g. rewrite f_eq_g. rewrite f_eq_g.
unfold id.
assert (x'_encad2 : x - eps <= x' <= x + eps).
split.
apply Rle_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition.
apply Rle_trans with (r2:=x2) ; [ | apply Rmin_l] ; intuition.
assert (x1_lt_x' : x1 < x').
apply Sublemma3.
assert (x1_neq_x' : x1 <> x').
intro Hfalse. rewrite Hfalse, f_x'_y in y_cond.
assert (Hf : Rabs (y - f x) < f x - y).
apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). lra.
apply Rmin_l.
assert(Hfin : f x - y < f x - y).
apply Rle_lt_trans with (r2:=Rabs (y - f x)).
replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs.
rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. lra.
apply (Rlt_irrefl (f x - y)) ; assumption.
split ; intuition.
assert (x'_lb : x - eps < x').
apply Sublemma3.
split. intuition. apply Rlt_not_eq.
apply Rle_lt_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition.
assert (x'_lt_x2 : x' < x2).
apply Sublemma3.
assert (x1_neq_x' : x' <> x2).
intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond.
assert (Hf : Rabs (y - f x) < y - f x).
apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). lra.
apply Rmin_r.
assert(Hfin : y - f x < y - f x).
apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. lra.
apply (Rlt_irrefl (y - f x)) ; assumption.
split ; intuition.
assert (x'_ub : x' < x + eps).
apply Sublemma3.
split. intuition. apply Rlt_not_eq.
apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition.
apply Rabs_def1 ; lra.
assumption.
split. apply Rle_trans with (r2:=x1) ; intuition.
apply Rle_trans with (r2:=x2) ; intuition.
Qed.
Lemma continuity_pt_recip_interv : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub),
(forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
(forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall a, lb <= a <= ub -> continuity_pt f a) ->
forall b,
f lb < b < f ub ->
continuity_pt g b.
Proof.
intros f g lb ub lb_lt_ub f_incr_interv f_eq_g g_wf.
assert (g_eq_f_prelim := leftinv_is_rightinv_interv f g lb ub f_incr_interv f_eq_g).
assert (g_eq_f : forall x, lb <= x <= ub -> (comp g f) x = id x).
intro x ; apply g_eq_f_prelim ; assumption.
apply (continuity_pt_recip_prelim f g lb ub lb_lt_ub f_incr_interv g_eq_f).
Qed.
(** * Derivability of the reciprocal function *)
Lemma derivable_pt_lim_recip_interv : forall (f g:R->R) (lb ub x:R)
(Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a) (Prg : continuity_pt g x),
lb < ub ->
lb < x < ub ->
forall (Prg_incr:g lb <= g x <= g ub),
(forall x, lb <= x <= ub -> (comp f g) x = id x) ->
derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 ->
derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr)).
Proof.
intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq.
assert (x_encad2 : lb <= x <= ub).
split ; apply Rlt_le ; intuition.
elim (Prf (g x)); simpl; intros l Hl.
unfold derivable_pt_lim.
intros eps eps_pos.
pose (y := g x).
assert (Hlinv := limit_inv).
assert (Hf_deriv : forall eps:R,
0 < eps ->
exists delta : posreal,
(forall h:R,
h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps)).
intros eps0 eps0_pos.
red in Hl ; red in Hl. elim (Hl eps0 eps0_pos).
intros deltatemp Htemp.
exists deltatemp ; exact Htemp.
elim (Hf_deriv eps eps_pos).
intros deltatemp Htemp.
red in Hlinv ; red in Hlinv ; unfold dist in Hlinv ; unfold R_dist in Hlinv.
assert (Hlinv' := Hlinv (fun h => (f (y+h) - f y)/h) (fun h => h <>0) l 0).
unfold limit1_in, limit_in, dist in Hlinv' ; simpl in Hlinv'. unfold R_dist in Hlinv'.
assert (Premisse : (forall eps : R,
eps > 0 ->
exists alp : R,
alp > 0 /\
(forall x : R,
(fun h => h <>0) x /\ Rabs (x - 0) < alp ->
Rabs ((f (y + x) - f y) / x - l) < eps))).
intros eps0 eps0_pos.
elim (Hf_deriv eps0 eps0_pos).
intros deltatemp' Htemp'.
exists deltatemp'.
split.
exact (cond_pos deltatemp').
intros htemp cond.
apply (Htemp' htemp).
exact (proj1 cond).
replace (htemp) with (htemp - 0).
exact (proj2 cond).
intuition.
assert (Premisse2 : l <> 0).
intro l_null.
rewrite l_null in Hl.
apply df_neq.
rewrite derive_pt_eq.
exact Hl.
elim (Hlinv' Premisse Premisse2 eps eps_pos).
intros alpha cond.
assert (alpha_pos := proj1 cond) ; assert (inv_cont := proj2 cond) ; clear cond.
unfold derivable, derivable_pt, derivable_pt_abs, derivable_pt_lim in Prf.
elim (Hl eps eps_pos).
intros delta f_deriv.
assert (g_cont := g_cont_pur).
unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont.
pose (mydelta := Rmin delta alpha).
assert (mydelta_pos : mydelta > 0).
unfold mydelta, Rmin.
case (Rle_dec delta alpha).
intro ; exact ((cond_pos delta)).
intro ; exact alpha_pos.
elim (g_cont mydelta mydelta_pos).
intros delta' new_g_cont.
assert(delta'_pos := proj1 (new_g_cont)).
clear g_cont ; assert (g_cont := proj2 (new_g_cont)) ; clear new_g_cont.
pose (mydelta'' := Rmin delta' (Rmin (x - lb) (ub - x))).
assert(mydelta''_pos : mydelta'' > 0).
unfold mydelta''.
apply Rmin_pos ; [intuition | apply Rmin_pos] ; apply Rgt_minus ; intuition.
pose (delta'' := mkposreal mydelta'' mydelta''_pos: posreal).
exists delta''.
intros h h_neq h_le_delta'.
assert (lb <= x +h <= ub).
assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
assert (lb <= x + h <= ub).
split.
assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z).
intros ; lra.
apply Sublemma.
apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))).
apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r.
apply Rgt_minus. intuition.
assert (Sublemma : forall x y z, y <= z - x -> x + y <= z).
intros ; lra.
apply Sublemma.
apply Rlt_le ; apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption.
apply Rlt_le_trans with (r2:=delta''). assumption.
apply Rle_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). intuition.
apply Rle_trans with (r2:=Rmin (x - lb) (ub - x)). apply Rmin_r. apply Rmin_r.
replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))).
assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x).
rewrite f_eq_g. rewrite f_eq_g ; unfold id. rewrite Rplus_comm ;
unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r. intuition. intuition.
assumption.
split ; [|intuition].
assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z).
intros ; lra.
apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption.
apply Rgt_minus. intuition.
field.
split. assumption.
intro Hfalse. assert (Hf : g (x+h) = g x) by intuition.
assert ((comp f g) (x+h) = (comp f g) x).
unfold comp ; rewrite Hf ; intuition.
assert (Main : x+h = x).
replace (x +h) with (id (x+h)) by intuition.
assert (Temp : x = id x) by intuition ; rewrite Temp at 2 ; clear Temp.
rewrite <- f_eq_g. rewrite <- f_eq_g. assumption.
intuition. assumption.
assert (h = 0).
apply Rplus_0_r_uniq with (r:=x) ; assumption.
apply h_neq ; assumption.
replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))).
assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x).
rewrite f_eq_g. rewrite f_eq_g. unfold id ; rewrite Rplus_comm ;
unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r ; intuition.
assumption. assumption.
rewrite Hrewr at 1.
unfold comp.
replace (g(x+h)) with (g x + (g (x+h) - g(x))) by field.
pose (h':=g (x+h) - g x).
replace (g (x+h) - g x) with h' by intuition.
replace (g x + h' - g x) with h' by field.
assert (h'_neq : h' <> 0).
unfold h'.
intro Hfalse.
unfold Rminus in Hfalse ; apply Rminus_diag_uniq in Hfalse.
assert (Hfalse' : (comp f g) (x+h) = (comp f g) x).
intros ; unfold comp ; rewrite Hfalse ; trivial.
rewrite f_eq_g in Hfalse' ; rewrite f_eq_g in Hfalse'.
unfold id in Hfalse'.
apply Rplus_0_r_uniq in Hfalse'.
apply h_neq ; exact Hfalse'. assumption. assumption. assumption.
unfold Rdiv at 1 3; rewrite Rmult_1_l ; rewrite Rmult_1_l.
apply inv_cont.
split.
exact h'_neq.
rewrite Rminus_0_r.
unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont_pur.
elim (g_cont_pur mydelta mydelta_pos).
intros delta3 cond3.
unfold dist in cond3 ; simpl in cond3 ; unfold R_dist in cond3.
unfold h'.
assert (mydelta_le_alpha : mydelta <= alpha).
unfold mydelta, Rmin ; case (Rle_dec delta alpha).
trivial.
intro ; intuition.
apply Rlt_le_trans with (r2:=mydelta).
unfold dist in g_cont ; simpl in g_cont ; unfold R_dist in g_cont ; apply g_cont.
split.
unfold D_x ; simpl.
split.
unfold no_cond ; trivial.
intro Hfalse ; apply h_neq.
apply (Rplus_0_r_uniq x).
symmetry ; assumption.
replace (x + h - x) with h by field.
apply Rlt_le_trans with (r2:=delta'').
assumption ; unfold delta''. intuition.
apply Rle_trans with (r2:=mydelta''). apply Req_le. unfold delta''. intuition.
apply Rmin_l. assumption.
field ; split.
assumption.
intro Hfalse ; apply h_neq.
apply (Rplus_0_r_uniq x).
assert (Hfin : (comp f g) (x+h) = (comp f g) x).
apply Rminus_diag_uniq in Hfalse.
unfold comp.
rewrite Hfalse ; reflexivity.
rewrite f_eq_g in Hfin. rewrite f_eq_g in Hfin. unfold id in Hfin. exact Hfin.
assumption. assumption.
Qed.
Lemma derivable_pt_recip_interv_prelim0 : forall (f g : R -> R) (lb ub x : R)
(Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a),
continuity_pt g x ->
lb < ub ->
lb < x < ub ->
forall Prg_incr : g lb <= g x <= g ub,
(forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) ->
derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 ->
derivable_pt g x.
Proof.
intros f g lb ub x Prf g_cont_pt lb_lt_ub x_encad Prg_incr f_eq_g Df_neq.
unfold derivable_pt, derivable_pt_abs.
exists (1 / derive_pt f (g x) (Prf (g x) Prg_incr)).
apply derivable_pt_lim_recip_interv ; assumption.
Qed.
Lemma derivable_pt_recip_interv_prelim1 : forall (f g:R->R) (lb ub x : R),
lb < ub ->
f lb < x < f ub ->
(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall a : R, lb <= a <= ub -> derivable_pt f a) ->
derivable_pt f (g x).
Proof.
intros f g lb ub x lb_lt_ub x_encad g_wf f_deriv.
apply f_deriv.
apply g_wf; lra.
Qed.
Lemma derivable_pt_recip_interv_prelim1_decr : forall (f g:R->R) (lb ub x : R),
lb < ub ->
f ub < x < f lb ->
(forall x : R, f ub <= x -> x <= f lb -> lb <= g x <= ub) ->
(forall a : R, lb <= a <= ub -> derivable_pt f a) ->
derivable_pt f (g x).
Proof.
intros f g lb ub x lb_lt_ub x_encad g_wf f_deriv.
apply f_deriv.
apply g_wf; lra.
Qed.
Lemma derivable_pt_recip_interv : forall (f g:R->R) (lb ub x : R)
(lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)
(f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x)
(g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)
(f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)
(f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a),
derive_pt f (g x)
(derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub
x_encad g_wf f_derivable)
<> 0 ->
derivable_pt g x.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable Df_neq.
assert(g_incr : g (f lb) < g x < g (f ub)).
assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf).
split ; apply Temp ; intuition.
exact (proj1 x_encad). apply Rlt_le ; exact (proj2 x_encad).
apply Rlt_le ; exact (proj1 x_encad). exact (proj2 x_encad).
assert(g_incr2 : g (f lb) <= g x <= g (f ub)).
split ; apply Rlt_le ; intuition.
assert (g_eq_f := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf).
unfold comp, id in g_eq_f.
assert (f_derivable2 : forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a).
intros a a_encad ; apply f_derivable.
rewrite g_eq_f in a_encad ; rewrite g_eq_f in a_encad ; intuition.
apply derivable_pt_recip_interv_prelim0 with (f:=f) (lb:=f lb) (ub:=f ub)
(Prf:=f_derivable2) (Prg_incr:=g_incr2).
apply continuity_pt_recip_interv with (f:=f) (lb:=lb) (ub:=ub) ; intuition.
apply derivable_continuous_pt ; apply f_derivable ; intuition.
exact (proj1 x_encad). exact (proj2 x_encad). apply f_incr ; intuition.
assumption.
intros x0 x0_encad ; apply f_eq_g ; intuition.
rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub)
(pr2:=derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad g_wf f_derivable);
[| |rewrite g_eq_f in g_incr ; rewrite g_eq_f in g_incr| ] ; intuition.
Qed.
Lemma derivable_pt_recip_interv_decr : forall (f g:R->R) (lb ub x : R)
(lb_lt_ub:lb < ub)
(x_encad:f ub < x < f lb)
(f_eq_g:forall x : R, f ub <= x -> x <= f lb -> comp f g x = id x)
(g_wf:forall x : R, f ub <= x -> x <= f lb -> lb <= g x <= ub)
(f_decr:forall x y : R, lb <= x -> x < y -> y <= ub -> f y < f x)
(f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a),
derive_pt f (g x)
(derivable_pt_recip_interv_prelim1_decr f g lb ub x lb_lt_ub
x_encad g_wf f_derivable)
<> 0 ->
derivable_pt g x.
Proof.
intros.
apply derivable_pt_opp_rev.
unshelve eapply (derivable_pt_recip_interv (mirr_fct f) (opp_fct g) (-ub) (-lb) (x)).
- lra.
- unfold mirr_fct; repeat rewrite Ropp_involutive; lra.
- intros x0 H1 H2.
unfold mirr_fct in H1,H2; unfold opp_fct.
rewrite Ropp_involutive in H1,H2.
pose proof g_wf x0 as g_wfs; lra.
- intros x0 H1.
apply derivable_pt_mirr, f_derivable; lra.
- intros x0 H1 H2.
unfold mirr_fct in H1,H2 |-*; unfold opp_fct, comp.
rewrite Ropp_involutive in H1,H2 |-*.
apply f_eq_g; lra.
- intros x0 y0 H1 H2 H3.
unfold mirr_fct.
apply f_decr; lra.
- (* In order to rewrite with derive_pt_mirr the term must have the form
derive_pt (mirr_fct f) _ (derivable_pt_mirr ...
pr_nu is a sort of proof irrelevance lemma for derive_pt equalities *)
unshelve erewrite (pr_nu _ _ _).
+ apply derivable_pt_mirr.
unfold opp_fct; rewrite Ropp_involutive.
apply f_derivable; apply g_wf; lra.
+ rewrite derive_pt_mirr.
unfold opp_fct; rewrite Ropp_involutive.
match goal with H:context[derive_pt _ _ ?pr] |- _ => rewrite (pr_nu f (g x) _ pr) end.
apply Ropp_neq_0_compat.
assumption.
Qed.
(****************************************************)
(** * Value of the derivative of the reciprocal function *)
(****************************************************)
Lemma derive_pt_recip_interv_prelim0 : forall (f g:R->R) (lb ub x:R)
(Prf:derivable_pt f (g x)) (Prg:derivable_pt g x),
lb < ub ->
lb < x < ub ->
(forall x, lb < x < ub -> (comp f g) x = id x) ->
derive_pt f (g x) Prf <> 0 ->
derive_pt g x Prg = 1 / (derive_pt f (g x) Prf).
Proof.
intros f g lb ub x Prf Prg lb_lt_ub x_encad local_recip Df_neq.
replace (derive_pt g x Prg) with
((derive_pt g x Prg) * (derive_pt f (g x) Prf) * / (derive_pt f (g x) Prf)).
unfold Rdiv.
rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)).
rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)).
apply Rmult_eq_compat_l.
rewrite Rmult_comm.
rewrite <- derive_pt_comp.
assert (x_encad2 : lb <= x <= ub) by intuition.
rewrite pr_nu_var2_interv with (g:=id) (pr2:= derivable_pt_id_interv lb ub x x_encad2) (lb:=lb) (ub:=ub) ; [reg| | |] ; assumption.
rewrite Rmult_assoc, Rinv_r.
intuition.
assumption.
Qed.
Lemma derive_pt_recip_interv_prelim1_0 : forall (f g:R->R) (lb ub x:R),
lb < ub ->
f lb < x < f ub ->
(forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
lb < g x < ub.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g.
assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf).
assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf).
unfold comp, id in Left_inv.
split ; [rewrite <- Left_inv with (x:=lb) | rewrite <- Left_inv ].
apply Temp ; intuition.
intuition.
apply Temp ; intuition.
intuition.
Qed.
Lemma derive_pt_recip_interv_prelim1_1 : forall (f g:R->R) (lb ub x:R),
lb < ub ->
f lb < x < f ub ->
(forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
(forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
lb <= g x <= ub.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g.
assert (Temp := derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g).
split ; apply Rlt_le ; intuition.
Qed.
Lemma derive_pt_recip_interv_prelim1_1_decr : forall (f g:R->R) (lb ub x:R),
lb < ub ->
f ub < x < f lb ->
(forall x y : R, lb <= x -> x < y -> y <= ub -> f y < f x) ->
(forall x : R, f ub <= x -> x <= f lb -> lb <= g x <= ub) ->
(forall x, f ub <= x -> x <= f lb -> (comp f g) x = id x) ->
lb <= g x <= ub.
Proof.
intros f g lb ub x lb_lt_ub x_encad f_decr g_wf f_eq_g.
enough (-ub <= - g x <= - lb) by lra.
unshelve eapply (derive_pt_recip_interv_prelim1_1 (mirr_fct f) (opp_fct g) (-ub) (-lb) (x)).
- lra.
- unfold mirr_fct; repeat rewrite Ropp_involutive; lra.
- intros x0 y0 H1 H2 H3.
unfold mirr_fct.
apply f_decr; lra.
- intros x0 H1 H2.
unfold mirr_fct in H1,H2; unfold opp_fct.
rewrite Ropp_involutive in H1,H2.
pose proof g_wf x0 as g_wfs; lra.
- intros x0 H1 H2.
unfold mirr_fct in H1,H2 |-*; unfold opp_fct, comp.
rewrite Ropp_involutive in H1,H2 |-*.
apply f_eq_g; lra.
Qed.
Lemma derive_pt_recip_interv : forall (f g:R->R) (lb ub x:R)
(lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)
(f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)
(g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)
(Prf:forall a : R, lb <= a <= ub -> derivable_pt f a)
(f_eq_g:forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x)
(Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x
lb_lt_ub x_encad g_wf Prf) <> 0),
derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g
g_wf f_incr Prf Df_neq)
=
1 / (derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x
lb_lt_ub x_encad f_incr g_wf f_eq_g))).
Proof.
intros.
assert(g_incr := (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub
x_encad f_incr g_wf f_eq_g)).
apply derive_pt_recip_interv_prelim0 with (lb:=f lb) (ub:=f ub) ;
[intuition |assumption | intuition |].
intro Hfalse ; apply Df_neq. rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub)
(pr2:= (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad
f_incr g_wf f_eq_g))) ;
[intuition | intuition | | intuition].
exact (derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g).
Qed.
Lemma derive_pt_recip_interv_decr : forall (f g:R->R) (lb ub x:R)
(lb_lt_ub:lb < ub)
(x_encad:f ub < x < f lb)
(f_decr:forall x y : R, lb <= x -> x < y -> y <= ub -> f y < f x)
(g_wf:forall x : R, f ub <= x -> x <= f lb -> lb <= g x <= ub)
(Prf:forall a : R, lb <= a <= ub -> derivable_pt f a)
(f_eq_g:forall x, f ub <= x -> x <= f lb -> (comp f g) x = id x)
(Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1_decr f g lb ub x
lb_lt_ub x_encad g_wf Prf) <> 0),
derive_pt g x (derivable_pt_recip_interv_decr f g lb ub x lb_lt_ub x_encad f_eq_g
g_wf f_decr Prf Df_neq)
=
1 / (derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1_decr f g lb ub x
lb_lt_ub x_encad f_decr g_wf f_eq_g))).
Proof.
(* This proof based on derive_pt_recip_interv looks fairly long compared to the direct proof above,
but the direct proof needs a lot of lengthy preparation lemmas e.g. derivable_pt_lim_recip_interv. *)
intros.
(* Note: here "unshelve epose" with proving the premises first does not work.
The more abstract form with the unbound evars has less issues with dependent rewriting. *)
epose proof (derive_pt_recip_interv (mirr_fct f) (opp_fct g) (-ub) (-lb) (x) _ _ _ _ _ _ _).
rewrite derive_pt_mirr_rev in H.
rewrite derive_pt_opp_rev in H.
unfold opp_fct in H.
match goal with
| H:context[derive_pt ?f ?x1 ?pr1] |- context[derive_pt ?f ?x2 ?pr2] =>
rewrite (pr_nu_xeq f x1 x2 pr1 pr2 (Ropp_involutive x2)) in H
end.
match goal with
| H:context[derive_pt ?f ?x ?pr1] |- context[derive_pt ?f ?x ?pr2] =>
rewrite (pr_nu f x pr1 pr2) in H
end.
apply Ropp_eq_compat in H; rewrite Ropp_involutive in H.
rewrite H; field.
pose proof Df_neq as Df_neq'.
match goal with
| H:context[derive_pt ?f ?x ?pr1] |- context[derive_pt ?f ?x ?pr2] =>
rewrite (pr_nu f x pr1 pr2) in H
end.
assumption.
Unshelve.
- abstract lra.
- unfold mirr_fct; repeat rewrite Ropp_involutive; abstract lra.
- intros x0 y0 H1 H2 H3.
unfold mirr_fct.
apply f_decr; abstract lra.
- intros x0 H1 H2.
unfold mirr_fct in H1,H2; unfold opp_fct.
rewrite Ropp_involutive in H1,H2.
pose proof g_wf x0 as g_wfs; abstract lra.
- intros x0 H1.
apply derivable_pt_mirr, Prf; abstract lra.
- intros x0 H1 H2.
unfold mirr_fct in H1,H2 |-*; unfold opp_fct, comp.
rewrite Ropp_involutive in H1,H2 |-*.
apply f_eq_g; abstract lra.
- unshelve erewrite (pr_nu _ _ _).
apply derivable_pt_mirr.
unfold opp_fct; rewrite Ropp_involutive.
apply Prf; apply g_wf; abstract lra.
rewrite derive_pt_mirr.
unfold opp_fct; rewrite Ropp_involutive.
apply Ropp_neq_0_compat.
erewrite (pr_nu _ _ _).
apply Df_neq.
Qed.
(****************************************************)
(** * Existence of the derivative of a function which is the limit of a sequence of functions *)
(****************************************************)
(* begin hide *)
Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2.
Proof.
intros x ub lb lb_lt_x x_lt_ub.
lra.
Qed.
Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb<x) (x_lt_ub:x<ub) : posreal.
apply (mkposreal ((ub-lb)/2) (ub_lt_2_pos x ub lb lb_lt_x x_lt_ub)).
Defined.
(* end hide *)
Lemma derivable_pt_lim_CVU : forall (fn fn':nat -> R -> R) (f g:R->R)
(x:R) c r, Boule c r x ->
(forall y n, Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) ->
(forall y, Boule c r y -> Un_cv (fun n => fn n y) (f y)) ->
(CVU fn' g c r) ->
(forall y, Boule c r y -> continuity_pt g y) ->
derivable_pt_lim f x (g x).
Proof.
intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos.
assert (eps_8_pos : 0 < eps / 8) by lra.
elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ;
intros delta1 (delta1_pos, g_cont).
destruct (Ball_in_inter _ _ _ _ _ xinb
(Boule_center x (mkposreal _ delta1_pos)))
as [delta Pdelta].
exists delta; intros h hpos hinbdelta.
assert (eps'_pos : 0 < (Rabs h) * eps / 4).
unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat.
apply Rabs_pos_lt ; assumption.
lra.
destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx].
assert (xhinbxdelta : Boule x delta (x + h)).
clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl.
destruct hinbdelta; apply Rabs_def1; lra.
assert (t : Boule c' r (x + h)).
apply Pdelta in xhinbxdelta; tauto.
destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh].
clear fn_CV_f t.
destruct (fn'_CVU_g (eps/8) eps_8_pos) as [N3 fn'c_CVU_gc].
pose (N := ((N1 + N2) + N3)%nat).
assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn N x - h * (g x))) < (Rabs h)*eps).
apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs ((fn N (x + h) - fn N x - h * g x))).
solve[apply Rabs_triang].
apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)).
solve[apply Rplus_le_compat_r ; apply Rabs_triang].
rewrite Rabs_Ropp.
case (Rlt_le_dec h 0) ; intro sgn_h.
assert (pr1 : forall c : R, x + h < c < x -> derivable_pt (fn N) c).
intros c c_encad ; unfold derivable_pt.
exists (fn' N c) ; apply Dfn_eq_fn'.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c).
solve[intros; apply derivable_id].
assert (xh_x : x+h < x) by lra.
assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c).
intros c c_encad ; apply derivable_continuous_pt.
exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c).
solve[intros; apply derivable_continuous ; apply derivable_id].
destruct (MVT (fn N) id (x+h) x pr1 pr2 xh_x pr3 pr4) as [c [P Hc]].
assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = (fn N (x+h) - fn N x)).
apply Rmult_eq_reg_l with (-1).
replace (-1 * (h * derive_pt (fn N) c (pr1 c P))) with (-h * derive_pt (fn N) c (pr1 c P)) by field.
replace (-1 * (fn N (x + h) - fn N x)) with (- (fn N (x + h) - fn N x)) by field.
replace (-h) with (id x - id (x + h)) by (unfold id; field).
rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
replace (- (fn N (x + h) - fn N x)) with (fn N x - fn N (x + h)) by field.
assumption.
now apply Rlt_not_eq, IZR_lt.
rewrite <- Hc'; clear Hc Hc'.
replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
rewrite Rabs_mult.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ;
rewrite Rabs_minus_sym ; apply fnxh_CV_fxh.
unfold N; lia.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l.
unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx.
unfold N ; lia.
replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field.
apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_le_compat_l ; apply Rplus_le_compat_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l.
solve[apply Rabs_pos].
solve[apply Rabs_triang].
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)).
apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
rewrite Rabs_minus_sym ; apply fn'c_CVU_gc.
unfold N ; lia.
assert (t : Boule x delta c).
destruct P.
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
Rabs h * (eps / 8)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |].
solve[unfold no_cond ; intuition].
apply Rgt_not_eq ; exact (proj2 P).
apply Rlt_trans with (Rabs h).
apply Rabs_def1.
apply Rlt_trans with 0.
destruct P; lra.
apply Rabs_pos_lt ; assumption.
rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | lra].
destruct P; lra.
clear -Pdelta xhinbxdelta.
apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
apply Rabs_def2 in P'; simpl in P'; destruct P';
apply Rabs_def1; lra.
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
(Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
lra.
assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
assert (Temp : l = fn' N c).
assert (bc'rc : Boule c' r c).
assert (t : Boule x delta c).
clear - xhinbxdelta P.
destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (Hl' := Dfn_eq_fn' c N bc'rc).
unfold derivable_pt_abs in Hl; clear -Hl Hl'.
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite <- Temp.
assert (Hl' : derivable_pt (fn N) c).
exists l ; apply Hl.
rewrite pr_nu_var with (g:= fn N) (pr2:=Hl').
elim Hl' ; clear Hl' ; intros l' Hl'.
assert (Main : l = l').
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite Main ; reflexivity.
reflexivity.
assert (h_pos : h > 0).
case sgn_h ; intro Hyp.
assumption.
apply False_ind ; apply hpos ; symmetry ; assumption.
clear sgn_h.
assert (pr1 : forall c : R, x < c < x + h -> derivable_pt (fn N) c).
intros c c_encad ; unfold derivable_pt.
exists (fn' N c) ; apply Dfn_eq_fn'.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c).
solve[intros; apply derivable_id].
assert (xh_x : x < x + h) by lra.
assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c).
intros c c_encad ; apply derivable_continuous_pt.
exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c).
solve[intros; apply derivable_continuous ; apply derivable_id].
destruct (MVT (fn N) id x (x+h) pr1 pr2 xh_x pr3 pr4) as [c [P Hc]].
assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = fn N (x+h) - fn N x).
pattern h at 1; replace h with (id (x + h) - id x) by (unfold id; field).
rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
assumption.
rewrite <- Hc'; clear Hc Hc'.
replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
rewrite Rabs_mult.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ;
rewrite Rabs_minus_sym ; apply fnxh_CV_fxh.
unfold N; lia.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)).
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l.
unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx.
unfold N ; lia.
replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field.
apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_le_compat_l ; apply Rplus_le_compat_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l.
solve[apply Rabs_pos].
solve[apply Rabs_triang].
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)).
apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
rewrite Rabs_minus_sym ; apply fn'c_CVU_gc.
unfold N ; lia.
assert (t : Boule x delta c).
destruct P.
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
Rabs h * (eps / 8)).
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ;
rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |].
solve[unfold no_cond ; intuition].
apply Rlt_not_eq ; exact (proj1 P).
apply Rlt_trans with (Rabs h).
apply Rabs_def1.
destruct P; rewrite Rabs_pos_eq;lra.
apply Rle_lt_trans with 0.
assert (t := Rabs_pos h); clear -t; lra.
clear -P; destruct P; lra.
clear -Pdelta xhinbxdelta.
apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
apply Rabs_def2 in P'; simpl in P'; destruct P';
apply Rabs_def1; lra.
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
(Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
lra.
assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
assert (Temp : l = fn' N c).
assert (bc'rc : Boule c' r c).
assert (t : Boule x delta c).
clear - xhinbxdelta P.
destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (Hl' := Dfn_eq_fn' c N bc'rc).
unfold derivable_pt_abs in Hl; clear -Hl Hl'.
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite <- Temp.
assert (Hl' : derivable_pt (fn N) c).
exists l ; apply Hl.
rewrite pr_nu_var with (g:= fn N) (pr2:=Hl').
elim Hl' ; clear Hl' ; intros l' Hl'.
assert (Main : l = l').
apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
rewrite Main ; reflexivity.
reflexivity.
replace ((f (x + h) - f x) / h - g x) with ((/h) * ((f (x + h) - f x) - h * g x)).
rewrite Rabs_mult ; rewrite Rabs_inv.
replace eps with (/ Rabs h * (Rabs h * eps)).
apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat ; apply Rabs_pos_lt ; assumption.
replace (f (x + h) - f x - h * g x) with (f (x + h) - fn N (x + h) - (f x - fn N x) +
(fn N (x + h) - fn N x - h * g x)) by field.
assumption.
field ; apply Rgt_not_eq ; apply Rabs_pos_lt ; assumption.
field. assumption.
Qed.
(* TODO #14736 for compatibility only, should be removed after deprecation *)
Require Import Max.
|