1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Export Rtrigo_fun.
Require Export Rtrigo_def.
Require Export Rtrigo_alt.
Require Export Cos_rel.
Require Export Cos_plus.
Require Import ZArith_base.
Require Import Zcomplements.
Require Import Lia.
Require Import Lra.
Require Import Ranalysis1.
Require Import Rsqrt_def.
Require Import PSeries_reg.
Local Open Scope nat_scope.
Local Open Scope R_scope.
Lemma CVN_R_cos :
forall fn:nat -> R -> R,
fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) ->
CVN_R fn.
Proof.
unfold CVN_R in |- *; intros.
cut ((r:R) <> 0).
intro hyp_r; unfold CVN_r in |- *.
exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)).
cut
{ l:R |
Un_cv
(fun n:nat =>
sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k)))
n) l }.
intros (x,p).
exists x.
split.
apply p.
intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult.
rewrite pow_1_abs; rewrite Rmult_1_l.
cut (0 < / INR (fact (2 * n))).
intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
apply Rmult_le_compat_l.
left; apply H1.
rewrite <- RPow_abs; apply pow_maj_Rabs.
rewrite Rabs_Rabsolu.
unfold Boule in H0; rewrite Rminus_0_r in H0.
left; apply H0.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Alembert_C2.
intro; apply Rabs_no_R0.
apply prod_neq_R0.
apply Rinv_neq_0_compat.
apply INR_fact_neq_0.
apply pow_nonzero; assumption.
assert (H0 := Alembert_cos).
unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros.
cut (0 < eps / Rsqr r).
intro; elim (H0 _ H2); intros N0 H3.
exists N0; intros.
unfold R_dist in |- *; assert (H5 := H3 _ H4).
unfold R_dist in H5;
replace
(Rabs
(Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) /
Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with
(Rsqr r *
Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))).
apply Rmult_lt_reg_l with (/ Rsqr r).
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)).
rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r;
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5.
unfold Rsqr in |- *; apply prod_neq_R0; assumption.
rewrite Rabs_inv.
rewrite Rabs_right.
reflexivity.
apply Rle_ge; apply Rle_0_sqr.
rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l;
repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rabs_inv.
rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l;
rewrite <- Rabs_inv.
rewrite Rinv_inv.
rewrite Rinv_mult.
rewrite Rabs_inv.
rewrite Rinv_inv.
rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rabs_inv.
do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right.
replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
unfold Rsqr in |- *; ring.
apply pow_nonzero; assumption.
replace (2 * S n)%nat with (S (S (2 * n))).
simpl in |- *; ring.
ring.
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply H1.
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0;
elim (Rlt_irrefl _ H0).
Qed.
(**********)
Lemma continuity_cos : continuity cos.
Proof.
set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)).
cut (CVN_R fn).
intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv; cut (forall n:nat, continuity (fn n)).
intro; cut (forall x:R, cos x = SFL fn cv x).
intro; cut (continuity (SFL fn cv) -> continuity cos).
intro; apply H1.
apply SFL_continuity; assumption.
unfold continuity in |- *; unfold continuity_pt in |- *;
unfold continue_in in |- *; unfold limit1_in in |- *;
unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
elim (H1 x _ H2); intros.
exists x0; intros.
elim H3; intros.
split.
apply H4.
intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6.
intro; unfold cos, SFL in |- *.
case (cv x) as (x1,HUn); case (exist_cos (Rsqr x)) as (x0,Hcos); intros.
symmetry; eapply UL_sequence.
apply HUn.
unfold cos_in, infinite_sum in Hcos; unfold Un_cv in |- *; intros.
elim (Hcos _ H0); intros N0 H1.
exists N0; intros.
unfold R_dist in H1; unfold R_dist, SP in |- *.
replace (sum_f_R0 (fun k:nat => fn k x) n) with
(sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n).
apply H1; assumption.
apply sum_eq; intros.
unfold cos_n, fn in |- *; apply Rmult_eq_compat_l.
unfold Rsqr in |- *; rewrite pow_sqr; reflexivity.
intro; unfold fn in |- *;
replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with
(fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F;
[ idtac | reflexivity ].
apply continuity_mult.
apply derivable_continuous; apply derivable_const.
apply derivable_continuous; apply (derivable_pow (2 * n)).
apply CVN_R_CVS; apply X.
apply CVN_R_cos; unfold fn in |- *; reflexivity.
Qed.
Lemma sin_gt_cos_7_8 : sin (7 / 8) > cos (7 / 8).
Proof.
assert (lo1 : 0 <= 7/8) by lra.
assert (up1 : 7/8 <= 4) by lra.
assert (lo : -2 <= 7/8) by lra.
assert (up : 7/8 <= 2) by lra.
destruct (pre_sin_bound _ 0 lo1 up1) as [lower _ ].
destruct (pre_cos_bound _ 0 lo up) as [_ upper].
apply Rle_lt_trans with (1 := upper).
apply Rlt_le_trans with (2 := lower).
unfold cos_approx, sin_approx.
simpl sum_f_R0.
unfold cos_term, sin_term; simpl fact; rewrite !INR_IZR_INZ.
simpl plus; simpl mult; simpl Z_of_nat.
field_simplify.
match goal with
|- IZR ?a / ?b < ?c / ?d =>
apply Rmult_lt_reg_r with d;[apply (IZR_lt 0); reflexivity |
unfold Rdiv at 2; rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_comm;
[ |apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity ]];
apply Rmult_lt_reg_r with b;[apply (IZR_lt 0); reflexivity | ]
end.
unfold Rdiv; rewrite !Rmult_assoc, Rinv_l, Rmult_1_r;
[ | apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity].
rewrite <- !mult_IZR.
apply IZR_lt; reflexivity.
Qed.
Definition PI_2_aux : {z | 7/8 <= z <= 7/4 /\ -cos z = 0}.
assert (cc : continuity (fun r =>- cos r)).
apply continuity_opp, continuity_cos.
assert (cvp : 0 < cos (7/8)).
assert (int78 : -2 <= 7/8 <= 2) by (split; lra).
destruct int78 as [lower upper].
case (pre_cos_bound _ 0 lower upper).
unfold cos_approx; simpl sum_f_R0; unfold cos_term.
intros cl _; apply Rlt_le_trans with (2 := cl); simpl.
lra.
assert (cun : cos (7/4) < 0).
replace (7/4) with (7/8 + 7/8) by field.
rewrite cos_plus.
apply Rlt_minus; apply Rsqr_incrst_1.
exact sin_gt_cos_7_8.
apply Rlt_le; assumption.
apply Rlt_le; apply Rlt_trans with (1 := cvp); exact sin_gt_cos_7_8.
apply IVT; auto; lra.
Qed.
Definition PI2 := proj1_sig PI_2_aux.
Definition PI := 2 * PI2.
Lemma cos_pi2 : cos PI2 = 0.
unfold PI2; case PI_2_aux; simpl.
intros x [_ q]; rewrite <- (Ropp_involutive (cos x)), q; apply Ropp_0.
Qed.
Lemma pi2_int : 7/8 <= PI2 <= 7/4.
unfold PI2; case PI_2_aux; simpl; tauto.
Qed.
(**********)
Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y.
Proof.
intros; unfold Rminus in |- *; rewrite cos_plus.
rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.
(**********)
Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1.
Proof.
intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x);
unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0.
Qed.
Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x).
Proof.
intros x; rewrite <- (sin2_cos2 x); ring.
Qed.
Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x).
Proof.
intro x; generalize (cos2 x); intro H1; rewrite H1.
unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *;
apply Ropp_involutive.
Qed.
(**********)
Lemma cos_PI2 : cos (PI / 2) = 0.
Proof.
unfold PI; generalize cos_pi2; replace ((2 * PI2)/2) with PI2 by field; tauto.
Qed.
Lemma sin_pos_tech : forall x, 0 < x < 2 -> 0 < sin x.
intros x [int1 int2].
assert (lo : 0 <= x) by (apply Rlt_le; assumption).
assert (up : x <= 4) by (apply Rlt_le, Rlt_trans with (1:=int2); lra).
destruct (pre_sin_bound _ 0 lo up) as [t _]; clear lo up.
apply Rlt_le_trans with (2:= t); clear t.
unfold sin_approx; simpl sum_f_R0; unfold sin_term; simpl.
match goal with |- _ < ?a =>
replace a with (x * (1 - x^2/6)) by (simpl; field)
end.
assert (t' : x ^ 2 <= 4).
replace 4 with (2 ^ 2) by field.
apply (pow_incr x 2); split; apply Rlt_le; assumption.
apply Rmult_lt_0_compat;[assumption | lra ].
Qed.
Lemma sin_PI2 : sin (PI / 2) = 1.
replace (PI / 2) with PI2 by (unfold PI; field).
assert (int' : 0 < PI2 < 2).
destruct pi2_int; split; lra.
assert (lo2 := sin_pos_tech PI2 int').
assert (t2 : Rabs (sin PI2) = 1).
rewrite <- Rabs_R1; apply Rsqr_eq_abs_0.
rewrite Rsqr_1, sin2, cos_pi2, Rsqr_0, Rminus_0_r; reflexivity.
revert t2; rewrite Rabs_pos_eq;[| apply Rlt_le]; tauto.
Qed.
Lemma PI_RGT_0 : PI > 0.
Proof. unfold PI; destruct pi2_int; lra. Qed.
Lemma PI_4 : PI <= 4.
Proof. unfold PI; destruct pi2_int; lra. Qed.
(**********)
Lemma PI_neq0 : PI <> 0.
Proof.
red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0;
elim (Rlt_irrefl _ H0).
Qed.
(**********)
Lemma cos_PI : cos PI = -1.
Proof.
replace PI with (PI / 2 + PI / 2).
rewrite cos_plus.
rewrite sin_PI2; rewrite cos_PI2.
ring.
symmetry in |- *; apply double_var.
Qed.
Lemma sin_PI : sin PI = 0.
Proof.
assert (H := sin2_cos2 PI).
rewrite cos_PI in H.
change (-1) with (-(1)) in H.
rewrite <- Rsqr_neg in H.
rewrite Rsqr_1 in H.
cut (Rsqr (sin PI) = 0).
intro; apply (Rsqr_eq_0 _ H0).
apply Rplus_eq_reg_l with 1.
rewrite Rplus_0_r; rewrite Rplus_comm; exact H.
Qed.
Lemma sin_bound : forall (a : R) (n : nat), 0 <= a -> a <= PI ->
sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)).
Proof.
intros a n a0 api; apply pre_sin_bound.
assumption.
apply Rle_trans with (1:= api) (2 := PI_4).
Qed.
Lemma cos_bound : forall (a : R) (n : nat), - PI / 2 <= a -> a <= PI / 2 ->
cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)).
Proof.
intros a n lower upper; apply pre_cos_bound.
apply Rle_trans with (2 := lower).
apply Rmult_le_reg_r with 2; [lra |].
replace ((-PI/2) * 2) with (-PI) by field.
assert (t := PI_4); lra.
apply Rle_trans with (1 := upper).
apply Rmult_le_reg_r with 2; [lra | ].
replace ((PI/2) * 2) with PI by field.
generalize PI_4; intros; lra.
Qed.
(**********)
Lemma neg_cos : forall x:R, cos (x + PI) = - cos x.
Proof.
intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.
(**********)
Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x).
Proof.
intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
(**********)
Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y.
Proof.
intros.
rewrite (sin_cos (x + y)).
replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ].
rewrite (sin_cos (PI / 2 + x)).
replace (PI / 2 + (PI / 2 + x)) with (x + PI).
rewrite neg_cos.
replace (cos (PI / 2 + x)) with (- sin x).
ring.
rewrite sin_cos; rewrite Ropp_involutive; reflexivity.
pattern PI at 1 in |- *; rewrite (double_var PI); ring.
Qed.
Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y.
Proof.
intros; unfold Rminus in |- *; rewrite sin_plus.
rewrite <- cos_sym; rewrite sin_antisym; ring.
Qed.
(**********)
Definition tan (x:R) : R := sin x / cos x.
Lemma tan_plus :
forall x y:R,
cos x <> 0 ->
cos y <> 0 ->
cos (x + y) <> 0 ->
1 - tan x * tan y <> 0 ->
tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).
Proof.
intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus;
unfold Rdiv in |- *;
replace (cos x * cos y - sin x * sin y) with
(cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))).
rewrite Rinv_mult.
repeat rewrite <- Rmult_assoc;
replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with
(sin x * / cos x + sin y * / cos y).
reflexivity.
rewrite Rmult_plus_distr_r; rewrite Rinv_mult.
repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x));
repeat rewrite <- Rmult_assoc.
repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ].
unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc;
rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y));
rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite (Rmult_comm (sin x));
rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc;
apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y));
rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
apply Rmult_1_r.
assumption.
assumption.
Qed.
(*******************************************************)
(** * Some properties of cos, sin and tan *)
(*******************************************************)
Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x.
Proof.
intro x; rewrite double; rewrite sin_plus.
rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc;
apply double.
Qed.
Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x.
Proof.
intro x; rewrite double; apply cos_plus.
Qed.
Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1.
Proof.
intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc;
rewrite cos_plus; generalize (sin2_cos2 x); rewrite double;
intro H1; rewrite <- H1; ring_Rsqr.
Qed.
Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x.
Proof.
intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double.
generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus;
ring_Rsqr.
Qed.
Lemma tan_2a :
forall x:R,
cos x <> 0 ->
cos (2 * x) <> 0 ->
1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x).
Proof.
repeat rewrite double; intros; repeat rewrite double; rewrite double in H0;
apply tan_plus; assumption.
Qed.
Lemma sin_neg : forall x:R, sin (- x) = - sin x.
Proof.
apply sin_antisym.
Qed.
Lemma cos_neg : forall x:R, cos (- x) = cos x.
Proof.
intro; symmetry in |- *; apply cos_sym.
Qed.
Lemma tan_0 : tan 0 = 0.
Proof.
unfold tan in |- *; rewrite sin_0; rewrite cos_0.
unfold Rdiv in |- *; apply Rmult_0_l.
Qed.
Lemma tan_neg : forall x:R, tan (- x) = - tan x.
Proof.
intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg;
unfold Rdiv in |- *.
apply Ropp_mult_distr_l_reverse.
Qed.
Lemma tan_minus :
forall x y:R,
cos x <> 0 ->
cos y <> 0 ->
cos (x - y) <> 0 ->
1 + tan x * tan y <> 0 ->
tan (x - y) = (tan x - tan y) / (1 + tan x * tan y).
Proof.
intros; unfold Rminus in |- *; rewrite tan_plus.
rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
rewrite Rmult_opp_opp; reflexivity.
assumption.
rewrite cos_neg; assumption.
assumption.
rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse;
rewrite Rmult_opp_opp; assumption.
Qed.
Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0.
Proof.
replace (3 * (PI / 2)) with (PI + PI / 2).
rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring.
pattern PI at 1 in |- *; rewrite (double_var PI).
ring.
Qed.
Lemma sin_2PI : sin (2 * PI) = 0.
Proof.
rewrite sin_2a; rewrite sin_PI; ring.
Qed.
Lemma cos_2PI : cos (2 * PI) = 1.
Proof.
rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring.
Qed.
Lemma neg_sin : forall x:R, sin (x + PI) = - sin x.
Proof.
intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring.
Qed.
Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x.
Proof.
intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI.
ring.
Qed.
Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x.
Proof.
intros x k; induction k as [| k Hreck].
simpl in |- *; ring_simplify (x + 2 * 0 * PI).
trivial.
replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
ring_simplify; trivial.
rewrite S_INR in |- *; ring.
Qed.
Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x.
Proof.
intros x k; induction k as [| k Hreck].
simpl in |- *; ring_simplify (x + 2 * 0 * PI).
trivial.
replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI).
rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *.
ring_simplify; trivial.
rewrite S_INR in |- *; ring.
Qed.
Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x.
Proof.
intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x.
Proof.
intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x).
Proof.
intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring.
Qed.
Lemma PI2_RGT_0 : 0 < PI / 2.
Proof.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ].
Qed.
Lemma SIN_bound : forall x:R, -1 <= sin x <= 1.
Proof.
intro; destruct (Rle_dec (-1) (sin x)) as [Hle|Hnle].
destruct (Rle_dec (sin x) 1) as [Hle'|Hnle'].
split; assumption.
cut (1 < sin x).
intro;
generalize
(Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1)
(Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H)));
rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0.
generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
repeat rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l;
rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
auto with real.
cut (sin x < -1).
intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H);
change (-1) with (-(1));
rewrite Ropp_involutive; clear H; intro;
generalize
(Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1)
(Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H)));
rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0;
rewrite sin2 in H0; unfold Rminus in H0;
generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l;
rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)).
auto with real.
Qed.
Lemma COS_bound : forall x:R, -1 <= cos x <= 1.
Proof.
intro; rewrite <- sin_shift; apply SIN_bound.
Qed.
Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0).
Proof.
intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro;
rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2;
rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro;
rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3).
Qed.
Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0.
Proof.
intros x.
destruct (Req_dec (cos x) 0). 2: now left.
right. intros H'.
apply (cos_sin_0 x).
now split.
Qed.
(*****************************************************************)
(** * Using series definitions of cos and sin *)
(*****************************************************************)
Definition sin_lb (a:R) : R := sin_approx a 3.
Definition sin_ub (a:R) : R := sin_approx a 4.
Definition cos_lb (a:R) : R := cos_approx a 3.
Definition cos_ub (a:R) : R := cos_approx a 4.
Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a.
Proof.
intros.
unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *.
set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))).
replace
(sum_f_R0
(fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3)
with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3);
[ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ].
cut (forall n:nat, Un (S n) < Un n).
intro; simpl in |- *.
repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r;
replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ];
replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ];
replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat);
[ idtac | ring ];
replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with
(Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ].
apply Rplus_lt_0_compat.
unfold Rminus in |- *; apply Rplus_lt_reg_l with (Un 1%nat);
rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat));
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
apply H1.
unfold Rminus in |- *; apply Rplus_lt_reg_l with (Un 3%nat);
rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat));
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
apply H1.
intro; unfold Un in |- *.
cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat).
intro; rewrite H1.
rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc;
apply Rmult_lt_compat_l.
apply pow_lt; assumption.
rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))).
apply lt_INR_0; apply Nat.neq_0_lt_0.
assert (H2 := fact_neq_0 (2 * n + 1)).
red in |- *; intro; elim H2; assumption.
rewrite <- Rinv_r_sym.
apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))).
apply lt_INR_0; apply Nat.neq_0_lt_0.
assert (H2 := fact_neq_0 (2 * S n + 1)).
red in |- *; intro; elim H2; assumption.
rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4).
apply Rmult_le_compat_l.
apply pos_INR.
simpl in |- *; rewrite Rmult_1_r; change 4 with (Rsqr 2);
apply Rsqr_incr_1.
apply Rle_trans with (PI / 2);
[ assumption
| unfold Rdiv in |- *; apply Rmult_le_reg_l with 2;
[ prove_sup0
| rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m;
[ apply PI_4 | discrR ] ] ].
left; assumption.
left; prove_sup0.
rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))).
do 2 rewrite fact_simpl; do 2 rewrite mult_INR.
repeat rewrite <- Rmult_assoc.
rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))).
apply Rmult_lt_compat_l.
apply lt_INR_0; apply Nat.neq_0_lt_0.
assert (H2 := fact_neq_0 (2 * n + 1)).
red in |- *; intro; elim H2; assumption.
do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n);
unfold INR in |- *.
replace (((1 + 1) * x + 1 + 1 + 1) * ((1 + 1) * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
[ idtac | ring ].
apply Rplus_lt_reg_l with (-(4)); rewrite Rplus_opp_l;
replace (-(4) + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
[ idtac | ring ].
apply Rplus_le_lt_0_compat.
cut (0 <= x).
intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos;
assumption || left; prove_sup.
apply pos_INR.
now apply IZR_lt.
ring.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
ring.
Qed.
Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a.
Proof.
intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0).
Qed.
Lemma COS :
forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a.
Proof.
intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0).
Qed.
(**********)
Lemma _PI2_RLT_0 : - (PI / 2) < 0.
Proof.
assert (H := PI_RGT_0).
lra.
Qed.
Lemma PI4_RLT_PI2 : PI / 4 < PI / 2.
Proof.
assert (H := PI_RGT_0).
lra.
Qed.
Lemma PI2_Rlt_PI : PI / 2 < PI.
Proof.
assert (H := PI_RGT_0).
lra.
Qed.
(***************************************************)
(** * Increasing and decreasing of [cos] and [sin] *)
(***************************************************)
Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x.
Proof.
intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _;
case (Rtotal_order x (PI / 2)); intro H2.
apply Rlt_le_trans with (sin_lb x).
apply sin_lb_gt_0; [ assumption | left; assumption ].
assumption.
elim H2; intro H3.
rewrite H3; rewrite sin_PI2; apply Rlt_0_1.
rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3);
intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4).
replace (PI + - (PI / 2)) with (PI / 2).
intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6;
change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6).
rewrite Rplus_opp_r.
intro H7;
elim
(SIN (PI - x) (Rlt_le 0 (PI - x) H7)
(Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI)));
intros H8 _;
generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5));
intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8).
field.
Qed.
Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x.
Proof.
intros; rewrite cos_sin;
generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H).
rewrite Rplus_opp_r; intro H1;
generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0);
rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2).
Qed.
Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x.
Proof.
intros x H1 H2; elim H1; intro H3;
[ elim H2; intro H4;
[ left; apply (sin_gt_0 x H3 H4)
| rewrite H4; right; symmetry in |- *; apply sin_PI ]
| rewrite <- H3; right; symmetry in |- *; apply sin_0 ].
Qed.
Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x.
Proof.
intros x H1 H2; elim H1; intro H3;
[ elim H2; intro H4;
[ left; apply (cos_gt_0 x H3 H4)
| rewrite H4; right; symmetry in |- *; apply cos_PI2 ]
| rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ].
Qed.
Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0.
Proof.
intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar;
rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI);
[ rewrite (sin_period (x - PI) 1); apply sin_ge_0;
[ replace (x - PI) with (x + - PI);
[ rewrite Rplus_comm; replace 0 with (- PI + PI);
[ apply Rplus_le_compat_l; assumption | ring ]
| ring ]
| replace (x - PI) with (x + - PI); rewrite Rplus_comm;
[ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
[ apply Rplus_le_compat_l; assumption | ring ]
| ring ] ]
| unfold INR in |- *; ring ].
Qed.
Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0.
Proof.
intros x H1 H2; apply Rge_le; rewrite <- Ropp_0;
rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar;
rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI).
rewrite cos_period; apply cos_ge_0.
replace (- (PI / 2)) with (- PI + PI / 2) by field.
unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l;
assumption.
unfold Rminus in |- *; rewrite Rplus_comm;
replace (PI / 2) with (- PI + 3 * (PI / 2)) by field.
apply Rplus_le_compat_l; assumption.
unfold INR in |- *; ring.
Qed.
Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0.
Proof.
intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x));
apply Ropp_lt_gt_contravar; rewrite <- neg_sin;
replace (x + PI) with (x - PI + 2 * INR 1 * PI);
[ rewrite (sin_period (x - PI) 1); apply sin_gt_0;
[ replace (x - PI) with (x + - PI);
[ rewrite Rplus_comm; replace 0 with (- PI + PI);
[ apply Rplus_lt_compat_l; assumption | ring ]
| ring ]
| replace (x - PI) with (x + - PI); rewrite Rplus_comm;
[ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI);
[ apply Rplus_lt_compat_l; assumption | ring ]
| ring ] ]
| unfold INR in |- *; ring ].
Qed.
Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0.
Proof.
intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H);
replace (2 * PI + - PI) with PI;
[ intro H1; rewrite Rplus_comm in H1;
generalize (Rplus_lt_compat_l (2 * PI) x 0 H0);
intro H2; rewrite (Rplus_comm (2 * PI)) in H2;
rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2;
rewrite <- (sin_period x 1); unfold INR in |- *;
replace (2 * 1 * PI) with (2 * PI);
[ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ]
| ring ].
Qed.
Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0.
Proof.
intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x));
apply Ropp_lt_gt_contravar; rewrite <- neg_cos;
replace (x + PI) with (x - PI + 2 * INR 1 * PI).
rewrite cos_period; apply cos_gt_0.
replace (- (PI / 2)) with (- PI + PI / 2) by field.
unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l;
assumption.
unfold Rminus in |- *; rewrite Rplus_comm;
replace (PI / 2) with (- PI + 3 * (PI / 2)) by field.
apply Rplus_lt_compat_l; assumption.
unfold INR in |- *; ring.
Qed.
Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x.
Proof.
intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0;
generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros;
generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5;
generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI);
intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply sin_gt_0; assumption.
apply Rinv_0_lt_compat; apply cos_gt_0; assumption.
Qed.
Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0.
Proof.
intros x H1 H2; unfold tan in |- *;
generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0));
intro H3; rewrite <- Ropp_0;
replace (sin x / cos x) with (- (- sin x / cos x)).
rewrite <- sin_neg; apply Ropp_gt_lt_contravar;
change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *;
apply Rmult_lt_0_compat.
apply sin_gt_0.
rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption.
apply Rlt_trans with (PI / 2).
rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption.
apply PI2_Rlt_PI.
apply Rinv_0_lt_compat; assumption.
unfold Rdiv in |- *; ring.
Qed.
Lemma cos_ge_0_3PI2 :
forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x.
Proof.
intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1);
unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x) by ring.
generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1;
generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1;
intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1).
rewrite Rplus_opp_r.
intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3;
generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3;
intro H3;
generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3).
replace (2 * PI + - (3 * (PI / 2))) with (PI / 2) by field.
intro H4;
apply
(cos_ge_0 (2 * PI - x)
(Rlt_le (- (PI / 2)) (2 * PI - x)
(Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4).
Qed.
Lemma form1 :
forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2).
Proof.
intros p q; pattern p at 1 in |- *;
replace p with ((p - q) / 2 + (p + q) / 2) by field.
rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2) by field.
rewrite cos_plus; rewrite cos_minus; ring.
Qed.
Lemma form2 :
forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2).
Proof.
intros p q; pattern p at 1 in |- *;
replace p with ((p - q) / 2 + (p + q) / 2) by field.
rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2) by field.
rewrite cos_plus; rewrite cos_minus; ring.
Qed.
Lemma form3 :
forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2).
Proof.
intros p q; pattern p at 1 in |- *;
replace p with ((p - q) / 2 + (p + q) / 2).
pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2).
rewrite sin_plus; rewrite sin_minus; ring.
pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring.
Qed.
Lemma form4 :
forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2).
Proof.
intros p q; pattern p at 1 in |- *;
replace p with ((p - q) / 2 + (p + q) / 2) by field.
pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2) by field.
rewrite sin_plus; rewrite sin_minus; ring.
Qed.
Lemma sin_increasing_0 :
forall x y:R,
- (PI / 2) <= x ->
x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y.
Proof.
intros; cut (sin ((x - y) / 2) < 0).
intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5.
assert (Hyp : 0 < 2).
prove_sup0.
generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5).
unfold Rdiv in |- *.
rewrite <- Rmult_assoc.
rewrite Rinv_r_simpl_m.
rewrite Rmult_0_r.
clear H5; intro H5; apply Rminus_lt; assumption.
discrR.
elim H5; intro H6.
rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4).
change (0 < (x - y) / 2) in H6;
generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1).
rewrite Ropp_involutive.
intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7;
generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7).
rewrite <- double_var.
intro H8.
assert (Hyp : 0 < 2).
prove_sup0.
generalize
(Rmult_le_compat_l (/ 2) (x - y) PI
(Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8).
repeat rewrite (Rmult_comm (/ 2)).
intro H9;
generalize
(sin_gt_0 ((x - y) / 2) H6
(Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI));
intro H10;
elim
(Rlt_irrefl (sin ((x - y) / 2))
(Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)).
generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3;
rewrite form4 in H3;
generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2).
rewrite <- double_var.
assert (Hyp : 0 < 2).
prove_sup0.
intro H4;
generalize
(Rmult_le_compat_l (/ 2) (x + y) PI
(Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4).
repeat rewrite (Rmult_comm (/ 2)).
clear H4; intro H4;
generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1);
replace (- (PI / 2) + - (PI / 2)) with (- PI) by field.
intro H5;
generalize
(Rmult_le_compat_l (/ 2) (- PI) (x + y)
(Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5).
replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm.
replace (/ 2 * - PI) with (- (PI / 2)) by field.
clear H5; intro H5; elim H4; intro H40.
elim H5; intro H50.
generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6;
generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6).
rewrite Rmult_0_r.
clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7.
assumption.
generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7;
generalize
(Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2))
(Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8;
generalize
(Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3);
intro H9; elim (Rlt_irrefl 0 H9).
rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3;
rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
elim (Rlt_irrefl 0 H3).
unfold Rdiv in H3.
rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50;
rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3;
elim (Rlt_irrefl 0 H3).
Qed.
Lemma sin_increasing_1 :
forall x y:R,
- (PI / 2) <= x ->
x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y.
Proof.
intros; generalize (Rplus_lt_compat_l x x y H3); intro H4;
generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H);
replace (- (PI / 2) + - (PI / 2)) with (- PI) by field.
assert (Hyp : 0 < 2).
prove_sup0.
intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6;
generalize
(Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6);
replace (/ 2 * - PI) with (- (PI / 2)) by field.
replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm.
clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5;
rewrite Rplus_comm in H5;
generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2).
rewrite <- double_var.
intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7;
generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7);
replace (/ 2 * PI) with (PI / 2) by apply Rmult_comm.
replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm.
clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1);
rewrite Ropp_involutive; clear H1; intro H1;
generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1;
generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2;
intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2);
clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3);
replace (- y + x) with (x - y) by apply Rplus_comm.
rewrite Rplus_opp_l.
intro H6;
generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6);
rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2) by apply Rmult_comm.
clear H6; intro H6;
generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2);
replace (- (PI / 2) + - (PI / 2)) with (- PI) by field.
intro H7;
generalize
(Rmult_le_compat_l (/ 2) (- PI) (x - y)
(Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7);
replace (/ 2 * - PI) with (- (PI / 2)) by field.
replace (/ 2 * (x - y)) with ((x - y) / 2) by apply Rmult_comm.
clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4;
generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8;
generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8);
clear H8; intro H8; cut (- PI < - (PI / 2)).
intro H9;
generalize
(sin_lt_0_var ((x - y) / 2)
(Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6);
intro H10;
generalize
(Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 (
2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11;
rewrite Rmult_comm; assumption.
apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI.
Qed.
Lemma sin_decreasing_0 :
forall x y:R,
x <= 3 * (PI / 2) ->
PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x.
Proof.
intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3;
generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3);
repeat rewrite <- sin_neg;
generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
replace (- PI + x) with (x - PI) by apply Rplus_comm.
replace (- PI + PI / 2) with (- (PI / 2)) by field.
replace (- PI + y) with (y - PI) by apply Rplus_comm.
replace (- PI + 3 * (PI / 2)) with (PI / 2) by field.
replace (- (PI - x)) with (x - PI) by ring.
replace (- (PI - y)) with (y - PI) by ring.
intros; change (sin (y - PI) < sin (x - PI)) in H8;
apply Rplus_lt_reg_l with (- PI); rewrite Rplus_comm.
rewrite (Rplus_comm _ x).
apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8).
Qed.
Lemma sin_decreasing_1 :
forall x y:R,
x <= 3 * (PI / 2) ->
PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x.
Proof.
intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y);
generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H);
generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0);
generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1);
generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2);
generalize (Rplus_lt_compat_l (- PI) x y H3);
replace (- PI + PI / 2) with (- (PI / 2)) by field.
replace (- PI + y) with (y - PI) by apply Rplus_comm.
replace (- PI + 3 * (PI / 2)) with (PI / 2) by field.
replace (- PI + x) with (x - PI) by apply Rplus_comm.
intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg;
replace (- (PI - x)) with (x - PI) by ring.
replace (- (PI - y)) with (y - PI) by ring.
apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4).
Qed.
Lemma sin_inj x y : -(PI/2) <= x <= PI/2 -> -(PI/2) <= y <= PI/2 -> sin x = sin y -> x = y.
Proof.
intros xP yP Hsin.
destruct (total_order_T x y) as [[H|H]|H]; auto.
- assert (sin x < sin y).
now apply sin_increasing_1; lra.
now lra.
- assert (sin y < sin x).
now apply sin_increasing_1; lra.
now lra.
Qed.
Lemma cos_increasing_0 :
forall x y:R,
PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y.
Proof.
intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y);
rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
unfold INR in |- *;
replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field.
replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field.
repeat rewrite cos_shift; intro H5;
generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4).
replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field.
replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field.
clear H1 H2 H3 H4; intros H1 H2 H3 H4;
apply Rplus_lt_reg_l with (-3 * (PI / 2));
replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5).
Qed.
Lemma cos_increasing_1 :
forall x y:R,
PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y.
Proof.
intros x y H1 H2 H3 H4 H5;
generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4);
generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5);
rewrite <- (cos_neg x); rewrite <- (cos_neg y);
rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field.
replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field.
clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5;
replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field.
replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field.
repeat rewrite cos_shift;
apply
(sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1).
Qed.
Lemma cos_decreasing_0 :
forall x y:R,
0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x.
Proof.
intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3);
repeat rewrite <- neg_cos; intro H4;
change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4;
rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H);
generalize (Rplus_le_compat_l PI x PI H0);
generalize (Rplus_le_compat_l PI 0 y H1);
generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
rewrite <- double.
clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_l with PI;
apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4).
Qed.
Lemma cos_decreasing_1 :
forall x y:R,
0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x.
Proof.
intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos;
rewrite (Rplus_comm x); rewrite (Rplus_comm y);
generalize (Rplus_le_compat_l PI 0 x H);
generalize (Rplus_le_compat_l PI x PI H0);
generalize (Rplus_le_compat_l PI 0 y H1);
generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r.
rewrite <- double.
generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros;
apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H).
Qed.
Lemma cos_inj x y : 0 <= x <= PI -> 0 <= y <= PI -> cos x = cos y -> x = y.
Proof.
intros xP yP Hcos.
destruct (total_order_T x y) as [[H|H]|H]; auto.
- assert (cos y < cos x).
now apply cos_decreasing_1; lra.
now lra.
- assert (cos x < cos y).
now apply cos_decreasing_1; lra.
now lra.
Qed.
Lemma tan_diff :
forall x y:R,
cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y).
Proof.
intros; unfold tan in |- *; rewrite sin_minus.
field.
now split.
Qed.
Lemma tan_increasing_0 :
forall x y:R,
- (PI / 4) <= x ->
x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y.
Proof.
intros; generalize PI4_RLT_PI2; intro H4;
generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
generalize
(cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
(Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
generalize
(cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
(Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
generalize
(not_eq_sym
(Rlt_not_eq 0 (cos x)
(cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
(Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
intro H6;
generalize
(not_eq_sym
(Rlt_not_eq 0 (cos y)
(cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
(Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
intro H7; generalize (tan_diff x y H6 H7); intro H8;
generalize (Rlt_minus (tan x) (tan y) H3); clear H3;
intro H3; rewrite H8 in H3; cut (sin (x - y) < 0).
intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1);
rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10);
clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
clear H11; intro H11;
generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11);
generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10).
replace (PI / 4 + PI / 4) with (PI / 2) by field.
replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)) by field.
intros; case (Rtotal_order 0 (x - y)); intro H14.
generalize
(sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI));
intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)).
elim H14; intro H15.
rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9).
apply Rminus_lt; assumption.
case (Rcase_abs (sin (x - y))); intro H9.
assumption.
generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9;
generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
replace (/ cos x * / cos y) with (/ (cos x * cos y)).
intro H12;
generalize
(Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9
(Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13;
elim
(Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)).
apply Rinv_mult.
Qed.
Lemma tan_increasing_1 :
forall x y:R,
- (PI / 4) <= x ->
x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y.
Proof.
intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4;
generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4);
intro H5; change (- (PI / 2) < - (PI / 4)) in H5;
generalize
(cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
(Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1;
generalize
(cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
(Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2;
generalize
(not_eq_sym
(Rlt_not_eq 0 (cos x)
(cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H)
(Rle_lt_trans x (PI / 4) (PI / 2) H0 H4))));
intro H6;
generalize
(not_eq_sym
(Rlt_not_eq 0 (cos y)
(cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1)
(Rle_lt_trans y (PI / 4) (PI / 2) H2 H4))));
intro H7; rewrite (tan_diff x y H6 H7);
generalize (Rinv_0_lt_compat (cos x) HP1); intro H10;
generalize (Rinv_0_lt_compat (cos y) HP2); intro H11;
generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11);
replace (/ cos x * / cos y) with (/ (cos x * cos y)).
clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2);
intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11);
clear H11; intro H11;
generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11).
replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)) by field.
clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3;
clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI;
intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1);
clear H1; intro H1;
generalize
(sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3);
intro H2;
generalize
(Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8);
rewrite Rmult_0_r; intro H4; assumption.
apply Rinv_mult.
Qed.
Lemma sin_incr_0 :
forall x y:R,
- (PI / 2) <= x ->
x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y.
Proof.
intros; case (Rtotal_order (sin x) (sin y)); intro H4;
[ left; apply (sin_increasing_0 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order x y); intro H6;
[ left; assumption
| elim H6; intro H7;
[ right; assumption
| generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ]
| elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.
Lemma sin_incr_1 :
forall x y:R,
- (PI / 2) <= x ->
x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y.
Proof.
intros; case (Rtotal_order x y); intro H4;
[ left; apply (sin_increasing_1 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order (sin x) (sin y)); intro H6;
[ left; assumption
| elim H6; intro H7;
[ right; assumption
| generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
| elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma sin_decr_0 :
forall x y:R,
x <= 3 * (PI / 2) ->
PI / 2 <= x ->
y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x.
Proof.
intros; case (Rtotal_order (sin x) (sin y)); intro H4;
[ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order x y); intro H6;
[ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8)
| elim H6; intro H7;
[ right; symmetry in |- *; assumption | left; assumption ] ]
| elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ].
Qed.
Lemma sin_decr_1 :
forall x y:R,
x <= 3 * (PI / 2) ->
PI / 2 <= x ->
y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x.
Proof.
intros; case (Rtotal_order x y); intro H4;
[ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order (sin x) (sin y)); intro H6;
[ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl y H8)
| elim H6; intro H7;
[ right; symmetry in |- *; assumption | left; assumption ] ]
| elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma cos_incr_0 :
forall x y:R,
PI <= x ->
x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y.
Proof.
intros; case (Rtotal_order (cos x) (cos y)); intro H4;
[ left; apply (cos_increasing_0 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order x y); intro H6;
[ left; assumption
| elim H6; intro H7;
[ right; assumption
| generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ]
| elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.
Lemma cos_incr_1 :
forall x y:R,
PI <= x ->
x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y.
Proof.
intros; case (Rtotal_order x y); intro H4;
[ left; apply (cos_increasing_1 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order (cos x) (cos y)); intro H6;
[ left; assumption
| elim H6; intro H7;
[ right; assumption
| generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
| elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma cos_decr_0 :
forall x y:R,
0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x.
Proof.
intros; case (Rtotal_order (cos x) (cos y)); intro H4;
[ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order x y); intro H6;
[ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8)
| elim H6; intro H7;
[ right; symmetry in |- *; assumption | left; assumption ] ]
| elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ].
Qed.
Lemma cos_decr_1 :
forall x y:R,
0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x.
Proof.
intros; case (Rtotal_order x y); intro H4;
[ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order (cos x) (cos y)); intro H6;
[ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl y H8)
| elim H6; intro H7;
[ right; symmetry in |- *; assumption | left; assumption ] ]
| elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
Lemma tan_incr_0 :
forall x y:R,
- (PI / 4) <= x ->
x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y.
Proof.
intros; case (Rtotal_order (tan x) (tan y)); intro H4;
[ left; apply (tan_increasing_0 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order x y); intro H6;
[ left; assumption
| elim H6; intro H7;
[ right; assumption
| generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ]
| elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ].
Qed.
Lemma tan_incr_1 :
forall x y:R,
- (PI / 4) <= x ->
x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y.
Proof.
intros; case (Rtotal_order x y); intro H4;
[ left; apply (tan_increasing_1 x y H H0 H1 H2 H4)
| elim H4; intro H5;
[ case (Rtotal_order (tan x) (tan y)); intro H6;
[ left; assumption
| elim H6; intro H7;
[ right; assumption
| generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8;
rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ]
| elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ].
Qed.
(**********)
Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0.
Proof.
intros.
elim H; intros.
apply (Zcase_sign x0).
intro.
rewrite H1 in H0.
simpl in H0.
rewrite H0; rewrite Rmult_0_l; apply sin_0.
intro.
cut (0 <= x0)%Z.
intro.
elim (IZN x0 H2); intros.
rewrite H3 in H0.
rewrite <- INR_IZR_INZ in H0.
rewrite H0.
elim (even_odd_cor x1); intros.
elim H4; intro.
rewrite H5.
rewrite mult_INR.
simpl in |- *.
rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
apply sin_0.
rewrite H5.
rewrite S_INR; rewrite mult_INR.
simpl in |- *.
rewrite Rmult_plus_distr_r.
rewrite Rmult_1_l; rewrite sin_plus.
rewrite sin_PI.
rewrite Rmult_0_r.
rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
rewrite sin_0; ring.
apply le_IZR.
left; apply IZR_lt.
assert (H2 := Z.gt_lt_iff).
elim (H2 x0 0%Z); intros.
apply H3; assumption.
intro.
rewrite H0.
replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)).
cut (0 <= - x0)%Z.
intro.
rewrite <- Ropp_Ropp_IZR.
elim (IZN (- x0) H2); intros.
rewrite H3.
rewrite <- INR_IZR_INZ.
elim (even_odd_cor x1); intros.
elim H4; intro.
rewrite H5.
rewrite mult_INR.
simpl in |- *.
rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
rewrite sin_0; ring.
rewrite H5.
rewrite S_INR; rewrite mult_INR.
simpl in |- *.
rewrite Rmult_plus_distr_r.
rewrite Rmult_1_l; rewrite sin_plus.
rewrite sin_PI.
rewrite Rmult_0_r.
rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
rewrite sin_0; ring.
apply le_IZR.
apply Rplus_le_reg_l with (IZR x0).
rewrite Rplus_0_r.
rewrite Ropp_Ropp_IZR.
rewrite Rplus_opp_r.
now apply Rlt_le, IZR_lt.
rewrite <- sin_neg.
rewrite Ropp_mult_distr_l_reverse.
rewrite Ropp_involutive.
reflexivity.
Qed.
Lemma sin_eq_0_0 (x:R) : sin x = 0 -> exists k : Z, x = IZR k * PI.
Proof.
intros Hx.
destruct (euclidian_division x PI PI_neq0) as (q & r & EQ & Hr & Hr').
exists q.
rewrite <- (Rplus_0_r (_*_)). subst. apply Rplus_eq_compat_l.
rewrite sin_plus in Hx.
assert (H : sin (IZR q * PI) = 0) by (apply sin_eq_0_1; now exists q).
rewrite H, Rmult_0_l, Rplus_0_l in Hx.
destruct (Rmult_integral _ _ Hx) as [H'|H'].
- exfalso.
generalize (sin2_cos2 (IZR q * PI)).
rewrite H, H', Rsqr_0, Rplus_0_l.
intros; now apply R1_neq_R0.
- rewrite Rabs_right in Hr'; [|left; apply PI_RGT_0].
destruct Hr as [Hr | ->]; trivial.
exfalso.
generalize (sin_gt_0 r Hr Hr'). rewrite H'. apply Rlt_irrefl.
Qed.
Lemma cos_eq_0_0 (x:R) :
cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2.
Proof.
rewrite cos_sin. intros Hx.
destruct (sin_eq_0_0 (PI/2 + x) Hx) as (k,Hk). clear Hx.
exists (k-1)%Z. rewrite <- Z_R_minus; simpl.
symmetry in Hk. field_simplify [Hk]. field.
Qed.
Lemma cos_eq_0_1 (x:R) :
(exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0.
Proof.
rewrite cos_sin. intros (k,->).
replace (_ + _) with (IZR k * PI + PI) by field.
rewrite neg_sin, <- Ropp_0. apply Ropp_eq_compat.
apply sin_eq_0_1. now exists k.
Qed.
Lemma sin_eq_O_2PI_0 (x:R) :
0 <= x -> x <= 2 * PI -> sin x = 0 ->
x = 0 \/ x = PI \/ x = 2 * PI.
Proof.
intros Lo Hi Hx. destruct (sin_eq_0_0 x Hx) as (k,Hk). clear Hx.
destruct (Rtotal_order PI x) as [Hx|[Hx|Hx]].
- right; right.
clear Lo. subst.
f_equal. change 2 with (IZR (- (-2))). f_equal.
apply Z.add_move_0_l.
apply one_IZR_lt1.
rewrite plus_IZR; simpl.
split.
+ replace (-1) with (-2 + 1) by ring.
apply Rplus_lt_compat_l.
apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|].
now rewrite Rmult_1_l.
+ apply Rle_lt_trans with 0; [|apply Rlt_0_1].
replace 0 with (-2 + 2) by ring.
apply Rplus_le_compat_l.
apply Rmult_le_reg_r with PI; [apply PI_RGT_0|].
trivial.
- right; left; auto.
- left.
clear Hi. subst.
replace 0 with (IZR 0 * PI) by apply Rmult_0_l. f_equal. f_equal.
apply one_IZR_lt1.
split.
+ apply Rlt_le_trans with 0;
[rewrite <- Ropp_0; apply Ropp_gt_lt_contravar, Rlt_0_1 | ].
apply Rmult_le_reg_r with PI; [apply PI_RGT_0|].
now rewrite Rmult_0_l.
+ apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|].
now rewrite Rmult_1_l.
Qed.
Lemma sin_eq_O_2PI_1 (x:R) :
0 <= x -> x <= 2 * PI ->
x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0.
Proof.
intros _ _ [ -> |[ -> | -> ]].
- now rewrite sin_0.
- now rewrite sin_PI.
- now rewrite sin_2PI.
Qed.
Lemma cos_eq_0_2PI_0 (x:R) :
0 <= x -> x <= 2 * PI -> cos x = 0 ->
x = PI / 2 \/ x = 3 * (PI / 2).
Proof.
intros Lo Hi Hx.
destruct (Rtotal_order x (3 * (PI / 2))) as [LT|[EQ|GT]].
- rewrite cos_sin in Hx.
assert (Lo' : 0 <= PI / 2 + x).
{ apply Rplus_le_le_0_compat. apply Rlt_le, PI2_RGT_0. trivial. }
assert (Hi' : PI / 2 + x <= 2 * PI).
{ apply Rlt_le.
replace (2 * PI) with (PI / 2 + 3 * (PI / 2)) by field.
now apply Rplus_lt_compat_l. }
destruct (sin_eq_O_2PI_0 (PI / 2 + x) Lo' Hi' Hx) as [H|[H|H]].
+ exfalso.
apply (Rplus_le_compat_l (PI/2)) in Lo.
rewrite Rplus_0_r, H in Lo.
apply (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 Lo)).
+ left.
apply (Rplus_eq_compat_l (-(PI/2))) in H.
ring_simplify in H. rewrite H. field.
+ right.
apply (Rplus_eq_compat_l (-(PI/2))) in H.
ring_simplify in H. rewrite H. field.
- now right.
- exfalso.
destruct (cos_eq_0_0 x Hx) as (k,Hk). clear Hx Lo.
subst.
assert (LT : (k < 2)%Z).
{ apply lt_IZR. simpl.
apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|].
apply Rlt_le_trans with (IZR k * PI + PI/2); trivial.
rewrite <- (Rplus_0_r (IZR k * PI)) at 1.
apply Rplus_lt_compat_l. apply PI2_RGT_0. }
assert (GT' : (1 < k)%Z).
{ apply lt_IZR. simpl.
apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|rewrite Rmult_1_l].
replace (3*(PI/2)) with (PI/2 + PI) in GT by field.
rewrite Rplus_comm in GT.
now apply Rplus_lt_reg_l in GT. }
lia.
Qed.
Lemma cos_eq_0_2PI_1 (x:R) :
0 <= x -> x <= 2 * PI ->
x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0.
Proof.
intros Lo Hi [ -> | -> ].
- now rewrite cos_PI2.
- now rewrite cos_3PI2.
Qed.
|