1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
Require Export Finite_sets.
Require Export Constructive_sets.
Require Export Classical.
Require Export Classical_sets.
Require Export Powerset.
Require Export Powerset_facts.
Require Export Powerset_Classical_facts.
Require Export Finite_sets_facts.
Require Export Image.
Require Export Infinite_sets.
Require Export Compare_dec.
Require Export Relations_1.
Require Export Partial_Order.
Require Export Cpo.
Section Integers_sect.
Inductive Integers : Ensemble nat :=
Integers_defn : forall x:nat, In nat Integers x.
Lemma le_reflexive : Reflexive nat le.
Proof.
red; auto with arith.
Qed.
Lemma le_antisym : Antisymmetric nat le.
Proof.
red; intros x y H H'; rewrite (Nat.le_antisymm x y); auto.
Qed.
Lemma le_trans : Transitive nat le.
Proof.
red; intros; apply Nat.le_trans with y; auto.
Qed.
Lemma le_Order : Order nat le.
Proof.
split; [exact le_reflexive | exact le_trans | exact le_antisym].
Qed.
Lemma triv_nat : forall n:nat, In nat Integers n.
Proof.
exact Integers_defn.
Qed.
Definition nat_po : PO nat.
apply Definition_of_PO with (Carrier_of := Integers) (Rel_of := le);
auto with sets arith.
apply Inhabited_intro with (x := 0).
apply Integers_defn.
exact le_Order.
Defined.
Lemma le_total_order : Totally_ordered nat nat_po Integers.
Proof.
apply Totally_ordered_definition.
simpl.
intros H' x y H'0.
elim Nat.le_gt_cases with (n := x) (m := y).
intro H'1; left; auto with sets arith.
intro H'1; right.
apply Nat.lt_le_incl; assumption.
Qed.
Lemma Finite_subset_has_lub :
forall X:Ensemble nat,
Finite nat X -> exists m : nat, Upper_Bound nat nat_po X m.
Proof.
intros X H'; elim H'.
exists 0.
apply Upper_Bound_definition.
unfold nat_po. simpl. apply triv_nat.
intros y H'0; elim H'0; auto with sets arith.
intros A H'0 H'1 x H'2; try assumption.
elim H'1; intros x0 H'3; clear H'1.
elim le_total_order.
simpl.
intro H'1; try assumption.
lapply H'1; [ intro H'4; idtac | try assumption ]; auto with sets arith.
generalize (H'4 x0 x).
clear H'4.
clear H'1.
intro H'1; lapply H'1;
[ intro H'4; elim H'4;
[ intro H'5; try exact H'5; clear H'4 H'1 | intro H'5; clear H'4 H'1 ]
| clear H'1 ].
exists x.
apply Upper_Bound_definition. simpl. apply triv_nat.
intros y H'1; elim H'1.
generalize le_trans.
intro H'4; red in H'4.
intros x1 H'6; try assumption.
apply H'4 with (y := x0). elim H'3; simpl; auto with sets arith. trivial.
intros x1 H'4; elim H'4. unfold nat_po; simpl; trivial.
exists x0.
apply Upper_Bound_definition.
unfold nat_po. simpl. apply triv_nat.
intros y H'1; elim H'1.
intros x1 H'4; try assumption.
elim H'3; simpl; auto with sets arith.
intros x1 H'4; elim H'4; auto with sets arith.
red.
intros x1 H'1; elim H'1; apply triv_nat.
Qed.
Lemma Integers_has_no_ub :
~ (exists m : nat, Upper_Bound nat nat_po Integers m).
Proof.
red; intro H'; elim H'.
intros x H'0.
elim H'0; intros H'1 H'2.
cut (In nat Integers (S x)).
intro H'3.
specialize H'2 with (y := S x); lapply H'2;
[ intro H'5; clear H'2 | try assumption; clear H'2 ].
apply Nat.nle_succ_diag_l in H'5; assumption.
apply triv_nat.
Qed.
Lemma Integers_infinite : ~ Finite nat Integers.
Proof.
generalize Integers_has_no_ub.
intro H'; red; intro H'0; try exact H'0.
apply H'.
apply Finite_subset_has_lub; auto with sets arith.
Qed.
End Integers_sect.
(* TODO #14736 for compatibility only, should be removed after deprecation *)
Require Export Gt Lt Le.
|