1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
Require Export Relations_1.
Require Export Relations_2.
Section Relations_3.
Variable U : Type.
Variable R : Relation U.
Definition coherent (x y:U) : Prop :=
exists z : _, Rstar U R x z /\ Rstar U R y z.
Definition locally_confluent (x:U) : Prop :=
forall y z:U, R x y -> R x z -> coherent y z.
Definition Locally_confluent : Prop := forall x:U, locally_confluent x.
Definition confluent (x:U) : Prop :=
forall y z:U, Rstar U R x y -> Rstar U R x z -> coherent y z.
Definition Confluent : Prop := forall x:U, confluent x.
Inductive noetherian (x: U) : Prop :=
definition_of_noetherian :
(forall y:U, R x y -> noetherian y) -> noetherian x.
Definition Noetherian : Prop := forall x:U, noetherian x.
End Relations_3.
#[global]
Hint Unfold coherent: sets.
#[global]
Hint Unfold locally_confluent: sets.
#[global]
Hint Unfold confluent: sets.
#[global]
Hint Unfold Confluent: sets.
#[global]
Hint Resolve definition_of_noetherian: sets.
#[global]
Hint Unfold Noetherian: sets.
|