1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import DecidableType OrderedType OrderedTypeEx.
Set Implicit Arguments.
Unset Strict Implicit.
(** NB: This file is here only for compatibility with earlier version of
[FSets] and [FMap]. Please use [Structures/Equalities.v] directly now. *)
(** * Examples of Decidable Type structures. *)
(** A particular case of [DecidableType] where
the equality is the usual one of Coq. *)
Module Type UsualDecidableType := Equalities.UsualDecidableTypeOrig.
(** a [UsualDecidableType] is in particular an [DecidableType]. *)
Module UDT_to_DT (U:UsualDecidableType) <: DecidableType := U.
(** an shortcut for easily building a UsualDecidableType *)
Module Type MiniDecidableType := Equalities.MiniDecidableType.
Module Make_UDT (M:MiniDecidableType) <: UsualDecidableType
:= Equalities.Make_UDT M.
(** An OrderedType can now directly be seen as a DecidableType *)
Module OT_as_DT (O:OrderedType) <: DecidableType := O.
(** (Usual) Decidable Type for [nat], [positive], [N], [Z] *)
Module Nat_as_DT <: UsualDecidableType := Nat_as_OT.
Module Positive_as_DT <: UsualDecidableType := Positive_as_OT.
Module N_as_DT <: UsualDecidableType := N_as_OT.
Module Z_as_DT <: UsualDecidableType := Z_as_OT.
(** From two decidable types, we can build a new DecidableType
over their cartesian product. *)
Module PairDecidableType(D1 D2:DecidableType) <: DecidableType.
Definition t := prod D1.t D2.t.
Definition eq x y := D1.eq (fst x) (fst y) /\ D2.eq (snd x) (snd y).
Lemma eq_refl : forall x : t, eq x x.
Proof.
intros (x1,x2); red; simpl; auto.
Qed.
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof.
intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
Qed.
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof.
intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto.
Qed.
Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
Proof.
intros (x1,x2) (y1,y2); unfold eq; simpl.
destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2); intuition.
Defined.
End PairDecidableType.
(** Similarly for pairs of UsualDecidableType *)
Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: UsualDecidableType.
Definition t := prod D1.t D2.t.
Definition eq := @eq t.
Definition eq_refl := @eq_refl t.
Definition eq_sym := @eq_sym t.
Definition eq_trans := @eq_trans t.
Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
Proof.
intros (x1,x2) (y1,y2);
destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2);
unfold eq, D1.eq, D2.eq in *; simpl;
(left; f_equal; auto; fail) ||
(right; injection; auto).
Defined.
End PairUsualDecidableType.
|